Portland Alcohol Research Center

Portland, OR, United States

Portland Alcohol Research Center

Portland, OR, United States
Time filter
Source Type

Groblewski P.A.,Oregon Health And Science University | Groblewski P.A.,Portland Alcohol Research Center | Ryabinin A.E.,Oregon Health And Science University | Ryabinin A.E.,Portland Alcohol Research Center | And 2 more authors.
Neurobiology of Learning and Memory | Year: 2012

Although the medial prefrontal cortex (mPFC) has been shown to be integrally involved in extinction of a number of associative behaviors, its role in extinction of alcohol (ethanol)-induced associative learning has received little attention. Previous reports have provided evidence supporting a role for the mPFC in acquisition and extinction of amphetamine-induced conditioned place preference (CPP) in rats, however, it remains unknown if this region is necessary for extinction of ethanol (EtOH)-induced associative learning in mice. Using immunohistochemical analysis of phosphorylated and unphosphorylated cAMP response element-binding protein (CREB), the current set of experiments first showed that the prelimbic (PL) and infralimbic (IL) subregions of the mPFC exhibited dynamic responses in phosphorylation of CREB to a Pavlovian-conditioned, EtOH-paired cue. Interestingly, CREB phosphorylation within these regions was sensitive to manipulations of the EtOH-cue contingency-that is, the cue-induced increase of pCREB in both the PL and IL was absent following extinction. In order to confirm a functional role of the mPFC in regulating the extinction process, we then showed that electrolytic lesions of the mPFC following acquisition blocked subsequent extinction of EtOH-CPP. Together, these experiments indicate a role for the PL and IL subregions of the mPFC in processing changes of the EtOH-cue contingency, as well as in regulating extinction of EtOH-induced associative learning in mice. © 2011 Elsevier Inc.

Smith M.L.,Oregon Health And Science University | Li J.,Oregon Health And Science University | Cote D.M.,Oregon Health And Science University | Ryabinin A.E.,Oregon Health And Science University | Ryabinin A.E.,Portland Alcohol Research Center
Neuroscience | Year: 2016

Noninvasive functional imaging holds great promise for the future of translational research, due to the ability to directly compare between preclinical and clinical models of psychiatric disorders. Despite this potential, concerns have been raised regarding the necessity to anesthetize rodent and monkey subjects during these procedures, because anesthetics may alter neuronal activity. For example, in studies on drugs of abuse and alcohol, it is not clear to what extent anesthesia can interfere with drug-induced neural activity. Therefore, the current study investigated whole-brain c-Fos activation following isoflurane anesthesia as well as ethanol-induced activation of c-Fos in anesthetized mice. In the first experiment, we examined effects of one or three sessions of gaseous isoflurane on c-Fos activation across the brain in male C57BL/6J mice. Isoflurane administration led to c-Fos activation in several areas, including the piriform cortex and lateral septum. Lower or similar levels of activation in these areas were detected after three sessions of isoflurane, suggesting that multiple exposures may eliminate some of the enhanced neuronal activation caused by acute isoflurane. In the second experiment, we investigated the ability of ethanol injection (1.5 or 2.5. g/kg. i.p.) to induce c-Fos activation under anesthesia. Following three sessions of isoflurane, 1.5. g/kg of ethanol induced c-Fos in the central nucleus of amygdala and the centrally-projecting Edinger-Westphal nucleus (EWcp). This induction was lower after 2.5. g/kg of ethanol. These results demonstrate that ethanol-induced neural activation can be detected in the presence of isoflurane anesthesia. They also suggest, that while habituation to isoflurane helps reduce neuronal activation, interaction between effects of anesthesia and alcohol can occur. Studies using fMRI imaging could benefit from using habituated animals and dose-response analyses. © 2015 IBRO.

Groblewski P.A.,Oregon Health And Science University | Groblewski P.A.,Portland Alcohol Research Center | Franken F.H.,Oregon Health And Science University | Franken F.H.,Portland Veterans Affairs Medical Center | And 2 more authors.
Behavioural Brain Research | Year: 2011

Although extracellular signal-regulated kinase (ERK) activity is essential for the acquisition of a variety of associative learning tasks, its involvement in the acquisition and extinction of ethanol (EtOH)-induced conditioned place preference (CPP) remains unknown. Therefore, in these experiments we examined the effects of the ERK-kinase (MEK)-inhibitor SL327 on acquisition and expression of EtOH-CPP as well as the dose- and time-dependent effects of SL327 on CPP extinction. The parametric findings of Experiment 1 showed that three 30-min (but not 15- or 5-min) non-reinforced trials were required to completely extinguish EtOH-CPP in male, DBA/2J mice. In Experiments 2 and 3, SL327 (30 and 50. mg/kg), administered 30 or 90. min prior to extinction trials, was unable to impair EtOH-CPP extinction. Experiment 4 showed that SL327 (50. mg/kg) had no effect on acquisition of EtOH-CPP or the development of EtOH-induced sensitization during conditioning. When administered prior to testing in Experiments 5 and 6, SL327 did not alter expression of EtOH-CPP but did reduce test activity. Importantly, SL327 significantly reduced pERK protein levels when assessed in the dorsal striatum and motor cortex (Experiment 7). Together, these data suggest that EtOH-related learning and EtOH reward in mice, as assessed with CPP, are not impaired by the systemically administered MEK-inhibitor SL327. © 2010.

Tipps M.E.,Oregon Health And Science University | Raybuck J.D.,Oregon Health And Science University | Buck K.J.,Oregon Health And Science University | Buck K.J.,Portland Alcohol Research Center | Lattal K.M.,Oregon Health And Science University
Learning and Memory | Year: 2014

Strain comparison studies have been critical to the identification of novel genetic and molecular mechanisms in learning and memory. However, even within a single learning paradigm, the behavioral data for the same strain can vary greatly, making it difficult to form meaningful conclusions at both the behavioral and cellular level. In fear conditioning, there is a high level of variability across reports, especially regarding responses to the conditioned stimulus (CS). Here, we compare C57BL/6 and DBA/2 mice using delay fear conditioning, trace fear conditioning, and a nonassociative condition. Our data highlight both the significant strain differences apparent in these fear conditioning paradigms and the significant differences in conditioning type within each strain. We then compare our data to an extensive literature review of delay and trace fear conditioning in these two strains. Finally, we apply a number of commonly used baseline normalization approaches to compare how they alter the reported differences. Our findings highlight three major sources of variability in the fear conditioning literature: CS duration, number of CS presentations, and data normalization to baseline measures. © 2014 Tipps et al.

Crabbe J.C.,Medical Center R and D12 | Crabbe J.C.,Portland Alcohol Research Center | Crabbe J.C.,Oregon Health And Science University
Genes, Brain and Behavior | Year: 2012

In biomedical research, one key stage of translating basic science knowledge to clinical practice is the reconciliation of phenotypes employed for laboratory animal studies with those important for the clinical condition. Alcohol dependence (AD) is a prototypic complex genetic trait. There is a long history of behaviour-genetic studies of AD in both human subjects and various genetic animal models. This review assesses the state of the art in our understanding of the genetic contributions to AD. In particular, it primarily focuses on the phenotypes studied in mouse genetic animal models, comparing them to the aspects of the human condition they are intended to target. It identifies several features of AD where genetic animal models have been particularly useful, and tries to identify understudied areas where there is good promise for further genetic animal model work. © 2012.

Barkley-Levenson A.M.,Oregon Health And Science University | Barkley-Levenson A.M.,Portland Alcohol Research Center | Crabbe J.C.,Oregon Health And Science University | Crabbe J.C.,Portland Alcohol Research Center
Alcoholism: Clinical and Experimental Research | Year: 2012

Background: The High Drinking in the Dark (HDID) selected mouse line was bred for high blood ethanol (EtOH) concentration (BEC) following the limited access drinking in the dark (DID) test and is a genetic animal model of binge-like drinking. This study examines the microstructure of EtOH drinking in these mice and their control line during 3 versions of the DID test to determine how drinking structure differences might relate to overall intake and BEC. Methods: Male mice from the HDID-1 replicate line and HS/Npt progenitor stock were tested in separate experiments on 2- and 4-day versions of the DID test, and on a 2-day 2-bottle choice DID test with 20% EtOH and water. Testing took place in home cages connected to a continuous fluid intake monitoring system, and drinking during the DID test was analyzed for drinking microstructure. Results: HDID-1 mice had more drinking bouts, shorter interbout interval, larger bout size, greater total EtOH intake, and higher BECs than HS/Npt mice on the second day of the 2-day DID test. The 4-day DID test showed greater bout size, total EtOH intake, and BEC in the HDID-1 mice than the HS/Npt mice. Total EtOH intake and BECs for the HDID-1 mice in the DID tests averaged 2.6 to 3.0 g/kg and 0.4 to 0.5 mg/ml, respectively. The 2-bottle choice test showed no genotype differences in drinking microstructure or total consumption but did show greater preference for the EtOH solution in HDID-1 mice than HS/Npt. Conclusions: These results suggest that inherent differences in EtOH drinking structure between the HDID-1 and HS/Npt mice, especially the larger bout size in the HDID-1 mice, contribute to the difference in intake during the standard DID test. © 2012 by the Research Society on Alcoholism.

Barkley-Levenson A.M.,Oregon Health And Science University | Barkley-Levenson A.M.,Portland Alcohol Research Center | Crabbe J.C.,Oregon Health And Science University | Crabbe J.C.,Portland Alcohol Research Center
Alcohol | Year: 2014

Drinking to intoxication is a critical component of risky drinking behaviors in humans, such as binge drinking. Previous rodent models of alcohol consumption largely failed to demonstrate that animals were patterning drinking in such a way as to experience intoxication. Therefore, few rodent models of binge-like drinking and no specifically genetic models were available to study possible predisposing genes. The High Drinking in the Dark (HDID) selective breeding project was started to help fill this void, with HDID mice selected for reaching high blood alcohol levels in a limited access procedure. HDID mice now represent a genetic model of drinking to intoxication and can be used to help answer questions regarding predisposition toward this trait as well as potential correlated responses. They should also prove useful for the eventual development of better therapeutic strategies. © 2014 Elsevier Inc.

Iancu O.D.,Oregon Health And Science University | Oberbeck D.,Oregon Health And Science University | Darakjian P.,Oregon Health And Science University | Metten P.,Oregon Health And Science University | And 6 more authors.
Alcoholism: Clinical and Experimental Research | Year: 2013

Background: Heterogeneous stock (HS/NPT) mice have been used to create lines selectively bred in replicate for elevated drinking in the dark (DID). Both selected lines routinely reach a blood ethanol (EtOH) concentration (BEC) of 1.00 mg/ml or greater at the end of the 4-hour period of access in Day 2. The mechanisms through which genetic differences influence DID are currently unclear. Therefore, the current study examines the transcriptome, the first stage at which genetic variability affects neurobiology. Rather than focusing solely on differential expression (DE), we also examine changes in the ways that gene transcripts collectively interact with each other, as revealed by changes in coexpression patterns. Methods: Naïve mice (N = 48/group) were genotyped using the Mouse Universal Genotyping Array, which provided 3,683 informative markers. Quantitative trait locus (QTL) analysis used a marker-by-marker strategy with the threshold for a significant logarithm of odds (LOD) set at 10.6. Gene expression in the ventral striatum was measured using the Illumina Mouse 8.2 array. Differential gene expression and the weighted gene coexpression network analysis (WGCNA) were implemented largely as described elsewhere. Results: Significant QTLs for elevated BECs after DID were detected on chromosomes 4, 14, and 16; the latter 2 were associated with gene-poor regions. None of the QTLs overlapped with known QTLs for EtOH preference drinking. Ninety-four transcripts were detected as being differentially expressed in both selected lines versus HS controls; there was no overlap with known preference genes. The WGCNA revealed 2 modules as showing significant effects of both selections on intramodular connectivity. A number of genes known to be associated with EtOH phenotypes (e.g., Gabrg1, Glra2, Grik1, Npy2r, and Nts) showed significant changes in connectivity. Conclusions: We found marked and consistent effects of selection on coexpression patterns; DE changes were more modest and less concordant. The QTLs and differentially expressed genes detected here are distinct from the preference phenotype. This is consistent with behavioral data and suggests that the DID and preference phenotypes are markedly different genetically. © 2013 by the Research Society on Alcoholism.

Barkley-Levenson A.M.,Oregon Health And Science University | Barkley-Levenson A.M.,Portland Alcohol Research Center | Crabbe J.C.,Oregon Health And Science University | Crabbe J.C.,Portland Alcohol Research Center
Alcohol | Year: 2015

Alcohol use disorders and anxiety disorders are highly comorbid in humans. In rodent lines selected for alcohol drinking, differences in anxiety-like behavior are also seen. The High Drinking in the Dark (HDID) lines of mice are selectively bred for drinking to intoxication during limited access to alcohol, and these mice represent a genetic model of risk for binge-like drinking. The present studies investigated whether these selected lines differ from control (HS) mice in basal anxiety behavior or in anxiolytic response to alcohol. We also assessed the genetic correlation between alcohol drinking in the dark (DID) and basal anxiety-like behavior using existing inbred strain data. Mice of both sexes and HDID replicates (HDID-1 and HDID-2) were tested on an elevated zero maze immediately following a DID test. In general, HDID mice showed more time spent in the open arms after drinking alcohol than HS mice, and open-arm time was significantly correlated with blood alcohol concentration. HDID-1 male mice also showed less anxiety-like behavior at baseline (water-drinking controls). In a separate experiment, HDID-1 and HS mice were tested for anxiolytic dose-response to acute alcohol injections. Both genotypes showed increasing time spent in the open arms with increasing alcohol doses, and HDID-1 and female mice had greater open-arm time across all doses. HDID-1 control males showed lower anxiety-like behavior than the HS control males. Inbred strain data analysis also showed no significant genetic relationship between alcohol DID and anxiety. These findings suggest that HDID selection has not produced systematic changes in anxiety-like behavior or sensitivity to alcohol-induced anxiolysis, though there is a tendency in the male mice of the first replicate toward reduced basal anxiety-like behavior. Therefore, anxiety state and sensitivity to alcohol's anxiolytic effects do not appear to contribute significantly to the high drinking behavior of the HDID mice. © 2015 Elsevier Inc.

Barkley-Levenson A.M.,Oregon Health And Science University | Barkley-Levenson A.M.,Portland Alcohol Research Center | Cunningham C.L.,Oregon Health And Science University | Smitasin P.J.,Oregon Health And Science University | And 2 more authors.
Addiction Biology | Year: 2015

Both rewarding and aversive effects contribute to alcohol consumption. Animals genetically predisposed to be high drinkers show reduced sensitivity to the aversive effects of alcohol, and in some instances, increased sensitivity to alcohol's rewarding effects. The present studies tested the high drinking in the dark (HDID) selected lines, a genetic model of drinking to intoxication, to determine whether intake in these mice was genetically related to sensitivity to alcohol aversion or reward. Male HDID mice from the first and second replicate lines (HDID-1 and HDID-2, respectively) and mice from the heterogeneous progenitor control population (HS/Npt, or HS) were conditioned for a taste aversion to a salt solution using two doses of alcohol, and lithium chloride (LiCl) and saline controls. In separate experiments, male and female HDID-1, HDID-2 and HS mice were conditioned for place preference using alcohol. HDID mice were found to have an attenuated sensitivity to alcohol at a moderate (2g/kg) dose compared to HS mice, but did not differ on conditioned taste aversion to a high (4g/kg) dose or LiCl or saline injections. HDID and HS mice showed comparable development of alcohol-induced conditioned place preference. These results indicate that high blood alcohol levels after drinking in the HDID mice is genetically related to attenuated aversion to alcohol, while sensitivity to alcohol reward is not altered in these mice. Thus, HDID mice may find a moderate dose of alcohol to be less aversive than control mice and consequently may drink more because of this reduced aversive sensitivity. © 2013 Society for the Study of Addiction.

Loading Portland Alcohol Research Center collaborators
Loading Portland Alcohol Research Center collaborators