Time filter

Source Type

Thirugnanasambantham K.,Pondicherry Center for Biological science | Hairul-Islam V.I.,Pondicherry Center for Biological science | Saravanan S.,Entomology Research Institute | Subasri S.,Pondicherry Center for Biological science | And 3 more authors.
Applied Biochemistry and Biotechnology | Year: 2013

MicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in regulating gene expression in animals, plants, and viruses, which involves in biological processes including development, cancer, immunity, and host-microorganism interactions. In this present study, we have used the computational approach to identify potent miRNAs involved in Anopheles gambiae immune response. Analysis of 217,261 A. gambiae ESTs and further study of RNA folding revealed six new miRNAs. The minimum free energy of the predicted miRNAs ranged from -27.2 to -62.63 kcal/mol with an average of -49.38 kcal/mol. While its A + U % ranges from 50 to 65 % with an average value of 57.37 %. Phylogenetic analysis of the predicted miRNAs revealed that aga-miR-277 was evolutionary highly conserved with more similarity with other mosquito species. Observing further the target identification of the predicted miRNA, it was noticed that the aga-miR-2304 and aga-miR-2390 are involved in modulation of immune response by targeting the gene encoding suppressin and protein prophenoloxidase. Further detailed studies of these miRNAs will help in revealing its function in modulation of A. gambiae immune response with respect to its parasite. © 2013 Springer Science+Business Media New York. Source

Sekar D.,Pondicherry Center for Biological science | Thirugnanasambantham K.,Pondicherry Center for Biological science | Thirugnanasambantham K.,State Bio Control Laboratory | Hairul Islam V.I.,Pondicherry Center for Biological science | And 2 more authors.
Cell Proliferation | Year: 2014

Use of sequencing approaches is an important aspect in the field of cancer genomics, where next-generation sequencing has already been utilized for targeting oncogenes or tumour-suppressor genes, that can be sequenced in a short time period. Alterations such as point mutations, insertions/deletions, copy number alterations, chromosomal rearrangements and epigenetic changes are encountered in cancer cell genomes, and application of various NGS technologies in cancer research will encounter such modifications. Rapid advancement in technology has led to exponential growth in the field of genomic analysis. The $1000 Genome Project (in which the goal is to sequence an entire human genome for $1000), and deep sequencing techniques (which have greater accuracy and provide a more complete analysis of the genome), are examples of rapid advancements in the field of cancer genomics. In this mini review, we explore sequencing techniques, correlating their importance in cancer therapy and treatment. © 2014 John Wiley & Sons Ltd. Source

Sekar D.,Pondicherry Center for Biological science | Hairul Islam V.I.,Pondicherry Center for Biological science | Thirugnanasambantham K.,Pondicherry Center for Biological science | Saravanan S.,Pondicherry Center for Biological science | Saravanan S.,Entomology Research Institute
Tumor Biology | Year: 2014

The critical role of microRNAs (miRNAs) in cell differentiation, homeostasis and cancer development has been extensively discussed in recent publications. The microRNAs with RISC enzyme complex allow it to find its complementary sequence, which is usually located in the 3′-untranslated region (UTR) of the target messenger RNA (mRNA). This is followed by inhibition of protein translation or promotion, resulting in degradation of the target gene. miR-21 has been mapped at chromosome 17q23.2, where it overlaps with the protein coding gene vacuole membrane protein 1 (VMP1), a human homologue of rat vacuole membrane protein. Recent evidence indicates that miR-21 plays a vital role in tumour cell proliferation, apoptosis and invasion. The inhibition of miR-21 may induce cell cycle arrest and increased chemosensitivity to anticancer agents, providing evidence that miR-21 functions as an oncogene in human cancer. Increased expression levels of miR-21 were observed in tumours arising from diverse tissue types. This also includes tumours of haematological origin, such as chronic lymphatic leukaemia, diffuse large B cell lymphomas (DLBCLs), acute myeloid leukaemia and Hodgkin lymphomas. Recently, it has been shown that high levels of B cell activation were induced by miR-21 in circulating B cells and are seen in HIV-infected individual. Notably, miR-21 is overexpressed in activated B cells, suggesting its assistance in maintaining B cell hyperactivation, which plays a pivotal role in HIV-infected cells. Therefore, miR-21 can be considered as a powerful biomarker in HIV-related lymphomas. The number of studies related to the role of miR-21 in HIV-related lymphomas is sparse; therefore, this mini review highlights the recent publications related to clinical impact and significance of miR-21, specifically in HIV- and non-HIV-related lymphomas. © 2014, International Society of Oncology and BioMarkers (ISOBM). Source

Sambandam B.,Anna University | Devasena T.,Anna University | Hairul Islam V.I.,Pondicherry Center for Biological science | Prakhya B.M.,International Institute for Biotechnology and Toxicology IIBAT
Indian Journal of Experimental Biology | Year: 2015

Coal combustion generates considerable amount of ultrafine particles and exposure to such particulate matter is a major health concern in the developing countries. In this study, we collected nano sized coal fly ash (CFA) and characterized them by scanning electron microscope-energy dispersive X-ray analysis (SEM-EDX), particle size analyzer (PSA) and transmission electron microscope (TEM), and investigated its toxicity in vitro using different cell lines. The imaging techniques showed that the coal fly ash nanoparticles (CFA-NPs) are predominately spherical shaped. The analyses have revealed that the CFA-NPs are 7-50 nm in diameter and contain several heavy metals associated with CFA particles. The studies showed significant amount of toxicity in all cell lines on treatment with CFA-NPs. The cytotoxicity and oxidative DNA damage caused by CFA-NPs were determined by inhibition of cellular metabolism (MTT), total intracellular glutathione (GSH), reactive oxygen species (ROS) and DNA fragmentation in cultured cell lines (Chang liver, HS294T and LL29). The cellular metabolism was inhibited in a dose-dependent manner in CFA-NPs treated cell lines. The CFA-NPs induced ROS and decreased the total intracellular glutathione with increased dose. Further, the CFA-NPs treated cells showed severe DNA laddering as a result of DNA fragmentation. © 2015, National Institute of Science Communication. All rights reserved. Source

Arokiyaraj S.,Seoul National University | Arokiyaraj S.,South Korean National Institute of Animal Science | Hairul Islam V.I.,Pondicherry Center for Biological science | Bharanidharan R.,HIGH-TECH | And 6 more authors.
World Journal of Microbiology and Biotechnology | Year: 2014

In the present study bacterial strains were isolated from the rumen fluids of Bos primigenius and investigated their in vitro probiotic properties with potent antibacterial activity and anti-inflammatory effects. 9 g positive bacterial isolates were obtained and three isolates could able to tolerate gastric conditions, high bile salt concentrations and exhibited significant bactericidal effect against the enteric pathogens Vibrio cholera, Enterococcus faecalis, Enterobacter aerogens, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Moreover it showed above 70 % cell surface hydrophobicity, significant low-invasion ability and potential adherence capacity in Caco-2 cells when compared with the control. The proinflammatory cytokines (TNF-α) was greatly reduced in rumen bacteria treatment and ARBS-1 modulate the immune response by activating the IL-4 secretion in parallel to TNF-α suppression. The 16s rRNA gene sequence of the active isolates were identified as Enterococcus hirae (ARBS-1), Pediococcus acidilactici (ARBS-4) and Bacillus licheniformis (ARBS-7). This study revealed the probiotic bactericidal properties of E. hirae obtained from the rumen of B. primigenius with potential antibacterial and anti-inflammatory effects. Future studies with the strains may yield some novel probiotic product for livestock's. © 2014 Springer Science+Business Media Dordrecht. Source

Discover hidden collaborations