Entity

Time filter

Source Type

Ponce, Puerto Rico

The Ponce Health science University , formerly Ponce School of Medicine & Health science, is a private university located in the city of Ponce in Puerto Rico. It was inaugurated in 1977. It holds nationally accredited graduate programs in the disciplines of Medicine , Clinical Psychology , Biomedical science , Medical science , and Public Health . In 2002, the institution established an academic partnership with the H. Lee Moffitt Cancer Center & Research Institute. Wikipedia.


Ferder L.,Ponce School of Medicine & Health Sciences | Ferder M.D.,Institute of Cardiovascular Pathophysiology | Inserra F.,Institute of Cardiovascular Pathophysiology
Current Hypertension Reports | Year: 2010

Obesity and related diseases are an important and growing health concern in the United States and around the world. Soft drinks and other sugar-sweetened beverages are now the primary sources of added sugars in Americans' diets. The metabolic syndrome is a cluster of common pathologies, including abdominal obesity linked to an excess of visceral fat, fatty liver, insulin resistance, hyperinsulinemia, dyslipidemia, and hypertension. Trends in all of these alterations are related to the consumption of dietary fructose and the introduction of high-fructose corn syrup (HFCS) as a sweetener in soft drinks and other foods. Experimental and clinical evidence suggests a progressive association between HFCS consumption, obesity, and the other injury processes. However, experimental HFCS consumption seems to produce some of the changes associated with metabolic syndrome even without increasing the body weight. Metabolic damage associated with HFCS probably is not limited to obesity-pathway mechanisms. © Springer Science+Business Media, LLC 2010. Source


Santini E.,University of Puerto Rico at San Juan | Porter J.T.,Ponce School of Medicine & Health Sciences
Journal of Neuroscience | Year: 2010

Growing evidence indicates that the activity of infralimbic prefrontal cortex (IL) is critical for inhibiting inappropriate fear responses following extinction learning. Recently, we showed that fear conditioning and extinction alter the intrinsic excitability and bursting of IL pyramidal neurons in brain slices. IL neurons from Sprague Dawley rats expressing high fear had lower intrinsic excitability and bursting than those from rats expressing low fear, suggesting that regulating the intrinsic excitability and bursting of IL neurons would modulate fear expression. To test this, we combined patch-clamp electrophysiology, auditory fear conditioning, and IL infusions of M-type K + channel modulators. Patch-clamp recordings from IL neurons showed that the M-type K+ channel blocker, XE-991, increased the number of spikes evoked by a depolarizing pulse and reduced the first interspike interval indicating enhanced bursting. To test whether pharmacological enhancement of IL excitability and bursting reduces fear expression and facilitates extinction, fear-conditioned rats were infused with XE-991 into IL before extinction training. XE-infused rats showed reduced freezing and facilitated extinction compared to vehicle-infused rats. The following day, recall of extinction memory was enhanced. Reducing IL excitability and bursting with the M-type K + channel agonist, flupirtine, had the opposite effect. Flupirtine reduced IL spike count and bursting in brain slices. Fear-conditioned rats infused with flupirtine into IL before extinction showed significantly higher levels of freezing, indicating that stimulation of M-channels enhanced fear expression. Our findings suggest that the intrinsic excitability and bursting of IL neurons regulate fear expression even before extinction. Copyright © 2010 the authors. Source


De Cavanagh E.M.V.,Austral University | Inserra F.,University of Buenos Aires | Ferder L.,Ponce School of Medicine & Health Sciences
Cardiovascular Research | Year: 2011

Protein and lipid oxidationmainly by mitochondrial reactive oxygen species (mtROS)was proposed as a crucial determinant of health and lifespan. Angiotensin II (Ang II) enhances ROS production by activating NAD(P)H oxidase and uncoupling endothelial nitric oxide synthase (NOS). Ang II also stimulates mtROS production, which depresses mitochondrial energy metabolism. In rodents, reninangiotensin system blockade (RAS blockade) increases survival and prevents age-associated changes. RAS blockade reduces mtROS and enhances mitochondrial content and function. This suggests that Ang II contributes to the ageing process by prompting mitochondrial dysfunction. Since Ang II is a pleiotropic peptide, the age-protecting effects of RAS blockade are expected to involve a variety of other mechanisms. Caloric restriction (CR)an age-retarding intervention in humans and animalsand RAS blockade display a number of converging effects, i.e. they delay the manifestations of hypertension, diabetes, nephropathy, cardiovascular disease, and cancer; increase body temperature; reduce body weight, plasma glucose, insulin, and insulin-like growth factor-1; ameliorate insulin sensitivity; lower protein, lipid, and DNA oxidation, and mitochondrial H2O2 production; and increase uncoupling protein-2 and sirtuin expression. A number of these overlapping effects involve changes in mitochondrial function. In CR, peroxisome proliferator-activated receptors (PPARs) seem to contribute to age-retardation partly by regulating mitochondrial function. RAS inhibition up-regulates PPARs; therefore, it is feasible that PPAR modulation is pivotal for mitochondrial protection by RAS blockade during rodent ageing. Other potential mechanisms that may underlie RAS blockades mitochondrial benefits are TGF-β down-regulation and up-regulation of Klotho and sirtuins. In conclusion, the available data suggest that RAS blockade deserves further research efforts to establish its role as a potential tool to mitigate the growing problem of age-associated chronic disease. © 2010 The Author. Source


Acevedo S.F.,Ponce School of Medicine & Health Sciences
Breast Cancer: Basic and Clinical Research | Year: 2012

As the number of cancer survivors rises, so does the importance of understanding what happens post-chemotherapy. The evidence is clear that chemotherapy affects not only cancer cells, but also healthy cells including neurons, leading to long-term cognitive dysfunction in a large portion of survivors. In order to understand the mechanism of action and in the hope of reducing the potential neurocognitive side effects of chemotherapy, pre-clinical testing should be used more effectively. However, the field is lacking translation from clinical studies to animal models. Spatial learning and memory paradigms based on the water maze, the most commonly used rodent model, are available for translational testing in humans and could overcome this weakness. There is an overwhelming need in the field to understand whether the water maze is an adequate model for post-chemotherapy impairments or whether other paradigms should be used. This is of great importance for the understanding of the mechanisms, side effects of new drugs, appropriate pharmacotherapy, and confounding factors related to chemotherapy treatment regiments. This review is very important to both basic scientists and clinicians determining how translational paradigms are critical to future cancer research, as well as what type of paradigms are appropriate in our technically advancing society. © The author(s), publisher and licensee Libertas Academica Ltd. Source


Rodriguez-Torres M.,Fundacion de Investigacion | Rodriguez-Torres M.,Ponce School of Medicine & Health Sciences
Current Opinion in Infectious Diseases | Year: 2013

Purpose of Review: Successful treatment of hepatitis C virus (HCV) infection is necessary for the survival of HIV-infected patients. This review covers the outcomes of current therapy, first-generation HCV direct-acting antivirals (DAAs) and their drug-to-drug interactions (DDIs). Understanding DDIs between HIV antiretroviral therapy (ART) and the DAAs in development is important to assure the best management of the HIV/HCV coinfected individuals. Recent Findings: The two first-in-class DAAs were approved for clinical use in 2011. The first trials with boceprevir or telaprevir added to standard therapy in HIV/HCV coinfected patients revealed triple therapy to be efficacious with significantly improved sustained virological response rates. However, these DAAs were associated with more and worse adverse effects, as well as with significant DDIs with multiple drugs, including ART. Early data on DAAs in development suggest improved efficacy and safety and the potential for lesser DDIs. Summary: Anti-HCV therapy is fundamental in coinfected patients, but the approved therapies are suboptimal. The first-generation of approved HCV DAAs improved efficacy of therapy in coinfected patients, but have multiple safety concerns, including potentially serious drug interactions with ART. Early results from newer DAAs are promising. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins. Source

Discover hidden collaborations