Puebla de Zaragoza, Mexico

Polytechnic University of Puebla

Puebla de Zaragoza, Mexico
Time filter
Source Type

Muniz-Montero C.,Polytechnic University of Puebla | Garcia-Jimenez L.V.,Polytechnic University of Puebla | Sanchez-Gaspariano L.A.,Autonomous University of Puebla | Sanchez-Lopez C.,Autonomous University of Tlaxcala | And 2 more authors.
Nonlinear Dynamics | Year: 2017

In this work, we propose an alternative for the circuital realization of analog fractional-order differentiators and integrators without using ladder networks. This alternative is obtained by a mathematical manipulation of a rational function in a similar way to the reported for the synthesis of the variable-state filters. The advantage of the proposed implementation is the requirement of only simple analog design blocks, such as integrators (of integer order), differential amplifiers and two-input adder amplifiers. Most important, contrarily to other reported solutions, the proposed realization can be fulfilled using commercially available resistors and capacitors, with a reduced number of calculations, and without negative impedance converters or inductors. In addition, the orders of the fractional derivative and integral can be modified just varying the gain of the differential amplifiers and adders. To validate the proposal of implementation, and as example of application, we present simulations (HSPICE, MATLAB) and experimental results of a first-order plus dead time plant controlled by fractional-order PI and PID controllers. The experimental results were obtained from a realization using field-programmable analog arrays. A comparison analysis highlights that the proposed alternative of implementation presents advantages regarding a Cauer-network-based realization in terms of number of active and passive elements, number of passive elements with non-commercial available values and design complexity. © 2017 Springer Science+Business Media B.V.

Limon Y.,University of Veracruz | Barcenas E.,CONACYT | Benitez-Guerrero E.,University of Veracruz | Medina M.A.,Polytechnic University of Puebla
2017 International Conference on Electronics, Communications and Computers, CONIELECOMP 2017 | Year: 2017

The μ-calculus is a modal logic with least and greatest fixed-point operators, encompassing many temporal, program and description logics such as LTL, PDL, CTL and ALCQIOreg. Many decision procedures have been proposed for the μ-calculus, however few implementations have been shown useful in practice. In this paper, we propose a satisfiability algorithm for the μ-calculus with converse interpreted on finite unranked trees. In contrast with current state of the art algorithms, mostly automata-based, we propose an algorithm based on a depth-first search. We prove the algorithm to be correct (sound and complete) and optimal (EXPTIME). We also provide an implementation, which shows significant performance improvement with respect to a known breadth-first search based algorithm. © 2017 IEEE.

Sedeno-Monge V.,UPAEP University | Arcega-Revilla R.,Hospital Of Especialidades | Rojas-Morales E.,Polytechnic University of Puebla | Santos-Lopez G.,Instituto Mexicano del Seguro Social | And 6 more authors.
Journal of Neuroimmunology | Year: 2014

Multiple sclerosis (MS) is an autoimmune disease characterized by a triad of inflammation, demyelination and gliosis. Because the suppressors of cytokine signaling (Socs) regulate the immune response, we quantified SOCS1 and SOCS3 transcription in peripheral blood leukocytes of patients with MS. SOCS1 transcription decreased significantly in MS patients compared with neurologically healthy persons (0.08 ± 0.02 vs 1.02 ± 0.23; p= 0.0001); while SOCS3 transcription increased in MS patients compared with controls (2.76 ± 0.66 vs 1.03 ± 0.27; p= 0.0008). Our results showed an imbalance of SOCS1 and SOCS3 transcription in MS patients, and a moderated negative correlation between them (Spearman's r= - 0.57; p= 0.0003). © 2014 Elsevier B.V.

Barcenas E.,Polytechnic University of Puebla | Lavalle J.,Autonomous University of Puebla
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | Year: 2013

The Semantic Web lays its foundations on the study of graph and tree logics. One of the most expressive graph logics is the fully enriched μ-calculus, which is a modal logic equipped with least and greatest fixed-points, nominals, inverse programs and graded modalities. Although it is well-known that the fully enriched μ-calculus is undecidable, it was recently shown that this logic is decidable when its models are finite trees. In the present work, we study the fully-enriched μ-calculus for trees extended with Presburger constraints. These constraints generalize graded modalities by restricting the number of children nodes with respect to Presburger arithmetic expressions. We show that the logic is decidable in EXPTIME. This is achieved by the introduction of a satisfiability algorithm based on a Fischer-Ladner model construction that is able to handle binary encodings of Presburger constraints. © Springer-Verlag 2013.

Sanchez-Lopez C.,Autonomous University of Tlaxcala | Mendoza-Lopez J.,Institute Microelectronica Of Seville Imsecnm | Carrasco-Aguilar M.A.,Autonomous University of Tlaxcala | Muniz-Montero C.,Polytechnic University of Puebla
IEEE Transactions on Circuits and Systems II: Express Briefs | Year: 2014

This brief introduces a new floating memristor emulator circuit based on second-generation current conveyors and passive elements. A mathematical model to characterize the memristor behavior was derived, showing a good accuracy among HSPICE simulations and experimental results. An analysis of the frequency behavior of the memristor is also described, showing that the frequency-dependent pinched hysteresis loop in the current-versus-voltage plane holds up to 20.2 kHz. Theoretical derivations and related results are experimentally validated through implementations from commercially available devices, and the proposed memristor emulator circuit can easily be reproducible at a low cost. Furthermore, the emulator circuit can be used as a teaching aid and for future applications with memristors, such as sensors, cellular neural networks, chaotic systems, programmable analog circuits, and nonvolatile memory devices. © 2004-2012 IEEE.

Hernandez J.A.,Autonomous University of the State of Morelos | Colorado D.,Autonomous University of the State of Morelos | Cortes-Aburto O.,Polytechnic University of Puebla | El Hamzaoui Y.,Autonomous University of the State of Morelos | And 2 more authors.
Applied Thermal Engineering | Year: 2013

In this paper, inverse neural network (ANNi) is applied to optimization of operating conditions or parameters in energy processes. The proposed method ANNi is a new tool which inverts the artificial neural network (ANN), and it uses a Nelder-Mead optimization method to find the optimum parameter value (or unknown parameter) for a given required condition in the process. In order to accomplish the target, first, it is necessary to build the artificial neural network (ANN) that simulates the output parameters for a polygeneration process. In general, this class of ANN model is constituted of a feedforward network with one hidden layer to simulate output layer, considering well-known input parameters of the process. Normally, a Levenberg-Marquardt learning algorithm, hyperbolic tangent sigmoid transfer-function, linear transfer-function and several neurons in the hidden layer (due to the complexity of the process) are considered in the constructed model. After that, ANN model is inverted. With a required output value and some input parameters it is possible to calculate the unknown input parameter using the Nelder-Mead algorithm. ANNi results on three different applications in energy processes showed that ANNi is in good agreement with target and calculated input data. Consequently, ANNi is applied to determine the optimal parameters, and it already has applications in different processes with a very short elapsed time (seconds). Therefore, this methodology can be useful for the controlling of engineering processes. © 2012 Published by Elsevier Ltd.

Chigo Anota E.,Autonomous University of Puebla | Escobedo-Morales A.,Autonomous University of Puebla | Salazar Villanueva M.,Autonomous University of Puebla | Vazquez-Cuchillo O.,Polytechnic University of Puebla | Rubio Rosas E.,Autonomous University of Puebla
Journal of Molecular Modeling | Year: 2013

The influence of vacancies and substitutional defects on the structural and electronic properties of graphene, graphene oxide, hexagonal boron nitride, and boron nitride oxide two-dimensional molecular models was studied using density functional theory (DFT) at the level of local density approximation (LDA). Bond length, dipole moment, HOMO-LUMO energy gap, and binding energy were calculated for each system with and without point defects. The results obtained indicate that the formation of a point defect does not necessary lead to structural instability; nevertheless, surface distortions and reconstruction processes were observed, mainly when a vacancy-type defect is generated. For graphene, it was found that incorporation of a point defect results in a semiconductor-semimetal transition and also increases notably its polar character. As with graphene, the formation of a point defect in a hexagonal boron nitride sheet reduces its energy gap, although its influence on the resulting dipole moment is not as dramatic as in graphene. The influence of point defects on the structural and electronic properties of graphene oxide and boron nitride oxide sheets were found to be mediated by the chemisorbed species. © 2012 Springer-Verlag Berlin Heidelberg.

Martinez-Miron E.-A.,Polytechnic University of Puebla | Rebolledo-Mendez G.,University of Veracruz
CEUR Workshop Proceedings | Year: 2015

The development of motivationally intelligent tutoring systems has been based on a variety of motivational models from the psychology field. These models mainly consider characteristics from de areas of values, expectancies and feelings [1]. However, this paper proposes to take into account some cultural aspects when operationalizing such models. The basis of this proposal is presented from the perspective of some cultural aspects that effect career choice in particular for a Mexican context.

de la Calleja E.M.,Federal University of Rio Grande do Sul | de la Calleja E.M.,Brazilian National Council for Scientific and Technological Development | Cervantes F.,CINVESTAV | de la Calleja J.,Polytechnic University of Puebla
Annals of Physics | Year: 2016

In this study, we determined the degree of order for 22 Jackson Pollock paintings using the Hausdorff-Besicovitch fractal dimension. Based on the maximum value of each multi-fractal spectrum, the artworks were classified according to the year in which they were painted. It has been reported that Pollock's paintings are fractal and that this feature was more evident in his later works. However, our results show that the fractal dimension of these paintings ranges among values close to two. We characterize this behavior as a fractal-order transition. Based on the study of disorder-order transition in physical systems, we interpreted the fractal-order transition via the dark paint strokes in Pollock's paintings as structured lines that follow a power law measured by the fractal dimension. We determined self-similarity in specific paintings, thereby demonstrating an important dependence on the scale of observations. We also characterized the fractal spectrum for the painting entitled Teri's Find. We obtained similar spectra for Teri's Find and Number 5, thereby suggesting that the fractal dimension cannot be rejected completely as a quantitative parameter for authenticating these artworks. © 2016 Elsevier Inc.

Barcenas E.,Polytechnic University of Puebla | Lavalle J.,Autonomous University of Puebla
Logical Methods in Computer Science | Year: 2014

We introduce a logical foundation to reason on tree structures with constraints on the number of node occurrences. Related formalisms are limited to express occurrence constraints on particular tree regions, as for instance the children of a given node. By contrast, the logic introduced in the present work can concisely express numerical bounds on any region, descendants or ancestors for instance. We prove that the logic is decidable in single exponential time even if the numerical constraints are in binary form. We also illustrate the usage of the logic in the description of numerical constraints on multi-directional path queries on XML documents. Furthermore, numerical restrictions on regular languages (XML schemas) can also be concisely described by the logic. This implies a characterization of decidable counting extensions of XPath queries and XML schemas. Moreover, as the logic is closed under negation, it can thus be used as an optimal reasoning framework for testing emptiness, containment and equivalence. © E. Bárcenas and J. Lavalle.

Loading Polytechnic University of Puebla collaborators
Loading Polytechnic University of Puebla collaborators