Milan, Italy
Milan, Italy

The Polytechnic University of Milan is the largest technical university in Italy, with about 40,000 students.It offers undergraduate, graduate and higher education courses in engineering, architecture and design.Founded in 1863, it is the oldest university in Milan.The Politecnico has two main campuses in Milan city, where the majority of the research and teaching activity are located, and other satellite campuses in five other cities across Lombardy and Emilia Romagna. The central offices and headquarters are located in the historical campus of Città Studi in Milan, which is also the largest, active since 1927.The university was ranked the best for Engineering and among the top big universities in Italy in the CENSIS-Repubblica Italian University rankings for 2011-2012 and is ranked as the 28th best technical university in the world according to the QS World University Rankings.Its notable alumni include Giulio Natta, Nobel laureate in chemistry in 1963. Wikipedia.


Time filter

Source Type

Patent
Polytechnic of Milan | Date: 2015-04-21

The present invention relates to the technical field of systems for the polarisation of electromagnetic radiation, particularly light radiation, and more particularly solar radiation. The present invention also relates to the application of such systems to the dynamic screening of essentially transparent surfaces, particularly in the building construction, automotive, architecture and interior design sectors and other sectors that require such screening.


Patent
French Atomic Energy Commission and Polytechnic of Milan | Date: 2016-08-26

Piezoresistive detection resonant device comprising a substrate, a mobile par configured to move with respect the substrate, suspension elements suspending the mobile part to the substrate, a piezoresistive detection device to detect the motions of the mobile part, said piezoresistive detection device comprising at least one strain gauge, wherein the piezoresistive detection resonant device also comprises a folded spring with at least two spring arms, connected to the mobile part and configured to be deformed by the motion of the mobile part, the at least one gauge being suspended between the substrate and the folded spring in such manner that the deformation of the gauge is reduced compared to the motion of the mobile part.


A synaptic circuit performing spike-timing dependent plasticity STDP interposed between a pre-synaptic neuron and a post-synapse neuron includes a memristor having a variable resistance value configured to receive a first signal from the pre-synaptic neuron. The circuit has an intermediate unit connected in series with the memristor for receiving a second signal from the pre-synaptic neuron and provides an output signal to the post-synaptic neuron. The intermediate unit receives a retroaction signal generated from the post-synaptic neuron and the memristor modifies the resistance value based on a delay between two at least partially overlapped input pulses, a spike event of the first signal and a pulse of the retroaction signal, in order to induct a potentiated state STP or a depressed state STD at the memristor. An electronic neuromorphic system having synaptic circuits and a method of performing spike timing dependent plasticity STDP by a synaptic circuit are also provided.


Patent
Polytechnic of Milan | Date: 2015-03-17

Described herein is a multiplexer/demultiplexer optical device (100) comprising: a first beam-splitter cube (BS1); a second beam-splitter cube (BS2) optically coupled to the first splitter (BS1); a first Porro-prism reflector (PR1), which is optically coupled to the second splitter (BS2); and a second Porro-prism reflector (PR2), which is optically coupled to the second splitter (BS2) and is structured for introducing into optical beams that traverse it a phase delay depending upon an orbital angular momentum of the optical beams and upon an orientation of the second reflector. The device is a Michelson interferometer structured for obtaining constructive/destructive interference such as to multiplex/demultiplex on/from corresponding input/output ports, on the basis of values of orbital angular momentum, an optical beam comprising a plurality of concentric optical beams with cylindrical symmetry having different values of orbital angular momentum.


The present invention relates to a magnetic nanoparticle comprising: a) a core containing a ferromagnetic material; b) an outer coating containing a mixture of a lipophilic compound and a hydrophilic compound. The outer coating of the above particle makes the nanoparticle stable in water and, simultaneously, capable of adsorbing/emulsifying large amounts of hydrophobic/lipophilic compounds. The present invention further relates to a process for the preparation of the above- mentioned particles as well as their use in the removal of hydrocarbons from solid or liquid environments and metal ions from contaminated water (wastewater).


Piezoresistive detection resonant device comprising a substrate (4), a mobile part (2) configured to move with respect the substrate (4), suspension means (6) suspending the mobile part (2) to the substrate (4), a piezoresistive detection device (10) to detect the motions of the mobile part (2), said piezoresistive detection device (10) comprising at least one strain gauge (12), wherein the piezoresistive detection resonant device also comprises a folded spring (20) with at least two spring arms, connected to the mobile part (2) and configured to be deformed by the motion of the mobile part (2), the at least one gauge (12) being suspended between the substrate (4) and the folded spring (20) in such manner that the deformation of the gauge is reduced compared to the motion of the mobile part.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-01-2016-2017 | Award Amount: 10.01M | Year: 2017

Europe has become a global leader in optical-near infrared astronomy through excellence in space and ground-based experimental and theoretical research. While the major infrastructures are delivered through major national and multi-national agencies (ESO, ESA) their continuing scientific competitiveness requires a strong community of scientists and technologists distributed across Europes nations. OPTICON has a proven record supporting European astrophysical excellence through development of new technologies, through training of new people, through delivering open access to the best infrastructures, and through strategic planning for future requirements in technology, innovative research methodologies, and trans-national coordination. Europes scientific excellence depends on continuing effort developing and supporting the distributed expertise across Europe - this is essential to develop and implement new technologies and ensure instrumentation and infrastructures remain cutting edge. Excellence depends on continuing effort to strengthen and broaden the community, through networking initiatives to include and then consolidate European communities with more limited science expertise. Excellence builds on training actions to qualify scientists from European communities which lack national access to state of the art research infrastructures to compete successfully for use of the best available facilities. Excellence depends on access programmes which enable all European scientists to access the best infrastructures needs-blind, purely on competitive merit. Global competitiveness and the future of the community require early planning of long-term sustainability, awareness of potentially disruptive technologies, and new approaches to the use of national-scale infrastructures under remote or robotic control. OPTICON will continue to promote this excellence, global competitiveness and long-term strategic planning.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-02-2016 | Award Amount: 15.84M | Year: 2017

inteGRIDy aims to integrate cutting-edge technologies, solutions and mechanisms in a scalable Cross-Functional Platform connecting energy networks with diverse stakeholders, facilitating optimal and dynamic operation of the Distribution Grid (DG), fostering the stability and coordination of distributed energy resources and enabling collaborative storage schemes within an increasing share of renewables. inteGRIDy will: a) Integrate innovative smart grid technologies, enabling optimal and dynamic operation of the distribution systems assets within high grid reliability and stability standards b) Validate innovative Demand Response technologies and relevant business models c) Utilize storage technologies and their capabilities to relieve the DG and enable significant avoidance of RES curtailment, enhancing self-consumption and net metering d) Enable interconnection with transport and heat networks, forming Virtual Energy Network synergies ensuring energy security e) Provide modelling & profiling extraction for network topology representation, innovative DR mechanisms and Storage characterization, facilitating decision making in DGs operations f) Provide predictive, forecasting tools & scenario-based simulation, facilitating an innovative Operation Analysis Framework g) Develop new business and services to create value for distribution domain stakeholders and end users/prosumers in an emerging electricity market. inteGRIDy will impact on: a) operations by reconfigurable topology control & supervision b) market by providing new services c) customer by enhanced engagement through DR mechanisms d) transmission by novel forecasting scenarios for the MV/LV areas e) part of the production incorporating innovative storage targeting the optimum use of RES f) environment by CO2 reduction inteGRIDy approach will be deployed and validated in 6 large-scale and 4 small-scale real-life demonstration covering different climatic zones and markets with different maturity.


Piazza R.,Polytechnic of Milan
Reports on Progress in Physics | Year: 2014

Colloid sedimentation has played a seminal role in the development of statistical physics thanks to the celebrated experiments by Perrin, which provided a concrete demonstration of molecular reality and gave strong support to Einstein's theory of Brownian motion. This review, which mostly focuses on settling at low Peclét number, where Brownian fluctuations are dominant, aims to show that a lot more can be learnt both from the sedimentation equilibrium and from the particle settling dynamics of a wide class of systems, ranging from simple colloids to mesogenic suspensions, from soft solids to active particles and living organisms. At the same time, the occurrence of unexpected and surprising effects brings about challenging questions in statistical and fluid mechanics that make sedimentation an exciting field of research. © 2014 IOP Publishing Ltd.

Loading Polytechnic of Milan collaborators
Loading Polytechnic of Milan collaborators