Time filter

Source Type

Berkeley, CA, United States

PolyPlus Battery Company | Date: 2014-02-14

Protected anode architectures provide a hermetic enclosure for an active metal (e.g., alkali metal, such as lithium) anode inside an anode compartment. The compartment is substantially impervious to ambient moisture and battery components such as catholyte (electrolyte about the cathode, and in some aspects catholyte may also comprise dissolved or suspended redox active species and redox active liquids), and prevents volatile components of the protected anode, such as anolyte (electrolyte about the anode), from escaping, while allowing for active metal ion transport between the anode and cathode into and out of the anode compartment.

PolyPlus Battery Company | Date: 2015-03-13

Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

PolyPlus Battery Company | Date: 2015-07-28

Protected anode architectures have ionically conductive protective membrane architectures that, in conjunction with compliant seal structures and anode backplanes, effectively enclose an active metal anode inside the interior of an anode compartment. This enclosure prevents the active metal from deleterious reaction with the environment external to the anode compartment, which may include aqueous, ambient moisture, and/or other materials corrosive to the active metal. The compliant seal structures are substantially impervious to anolytes, catholytes, dissolved species in electrolytes, and moisture and compliant to changes in anode volume such that physical continuity between the anode protective architecture and backplane are maintained. The protected anode architectures can be used in arrays of protected anode architectures and battery cells of various configurations incorporating the protected anode architectures or arrays.

Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety of electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.

PolyPlus Battery Company | Date: 2014-05-28

Water activated alkali metal battery cells, protected anode bi-polar electrodes and multi-cell stacks are configurable to achieve very high energy density. The cells, bi-polar electrode and multi-cell stacks include a protected anode and a cathode having a solid phase electro-active component material that is reduced during cell discharge.

Discover hidden collaborations