Entity

Time filter

Source Type

Pohang, South Korea

Pohang University of Science and Technology or POSTECH is a private university located in Pohang, South Korea dedicated to research and education in science and technology. In 2012 and 2013, the Times Higher Education ranked POSTECH 1st in its "100 Under 50 Young Universities" rankings. Wikipedia.


Bhadeshia H.K.D.H.,University of Cambridge | Bhadeshia H.K.D.H.,Pohang University of Science and Technology
Progress in Materials Science | Year: 2012

A casual metallurgist might be forgiven in believing that there are but a few basic types of steels used in the manufacture of some of the most technologically important engineering components, the rolling bearings. First the famous 1C-1.5Cr steel from which the majority of bearings are made. Its structure is apparently well-understood and the focus is on purity in order to avoid inclusions which initiate fatigue during rolling contact. Then there is the M50 steel and its variants, from which bearings which serve at slightly higher temperatures in aeroengines are manufactured, based on secondary-hardened martensite. The casual metallurgist would be wrong; there is a richness in the subject which inspires deep study. There are phenomena which are little understood, apparently incommensurate observations, some significant developments and other areas where convincing conclusions are difficult to reach. The subject seemed ready for a critical assessment; hence, this review. The structure and properties of bearing steels prior to the point of service are first assessed and described in the context of steelmaking, manufacturing and engineering requirements. This is followed by a thorough critique of the damage mechanisms that operate during service and in accelerated tests. © 2011 Elsevier Ltd. All rights reserved. Source


Kim S.Y.,Pohang University of Science and Technology
Nature communications | Year: 2010

Proton exchange fuel cells (PEFCs) have the potential to provide power for a variety of applications ranging from electronic devices to transportation vehicles. A major challenge towards economically viable PEFCs is finding an electrolyte that is both durable and easily passes protons. In this article, we study novel anhydrous proton-conducting membranes, formed by incorporating ionic liquids into synthetic block co-polymer electrolytes, poly(styrenesulphonate-b-methylbutylene) (S(n)MB(m)), as high-temperature PEFCs. The resulting membranes are transparent, flexible and thermally stable up to 180 °C. The increases in the sulphonation level of S(n)MB(m) co-polymers (proton supplier) and the concentration of the ionic liquid (proton mediator) produce an overall increase in conductivity. Morphology effects were studied by X-ray scattering and electron microscopy. Compared with membranes having discrete ionic domains (including Nafion 117), the nanostructured membranes revealed over an order of magnitude increase in conductivity with the highest conductivity of 0.045 S cm(-1) obtained at 165 °C. Source


The present invention relates to alpha-form zinc-phthalocyanine nanowires (ZnPc NWs) having enhanced water solubility and water dispersibility, to a composite of an alpha-form zinc-phthalocyanine nanowire/phenothiazine, to a method for preparing same, and to a photosensitizer including same or a pharmaceutical composition including same for preventing or treating cancers. Since the alpha-form zinc-phthalocyanine nanowires or the composite of alpha-form zinc-phthalocyanine nanowire/phenothiazine according to the present invention exhibit dual traits, i.e., photothermal and photodynamic traits in single molecules, they are very useful for the development of a multifunctional molecular system and can also be usefully applied to light therapy of cancers due to their good light therapeutic effects. Also, the composite of alpha-form zinc-phthalocyanine nanowire/phenothiazine itself can exhibit fluorescence to facilitate the introduction of an imaging system, so that diagnosis and treatment can be simultaneously performed using a single substance.


Patent
Pohang University of Science, Technology and Seoul Opto Device Co. | Date: 2012-02-17

The present invention relates to a gallium nitride (GaN) compound semiconductor light emitting element (LED) and a method of manufacturing the same. The present invention provides a vertical GaN LED capable of improving the characteristics of a horizontal LED by means of a metallic protective film layer and a metallic support layer. According to the present invention, a metallic protective film layer with a thickness of at least 10 microns may be formed on the lateral and/or bottom sides of the vertical GaN LED. Further, a metallic substrate may be used instead of a sapphire substrate. A metallic support layer may be formed to protect the element from being distorted or damaged. Furthermore, a P-type electrode may be partially formed on a PGaN layer in a mesh form.


Patent
Posco, Pohang University of Science and Technology | Date: 2014-03-17

The present patent application describes a cantilever for atomic force microscopy (AFM), which includes a cantilever body having a fixed end and a free end, the free end having a surface region being chemically modified by a dendron in which a plurality of termini of the branched region of the dendron are bound to the surface, and a terminus of the linear region of the dendron is functionalized.

Discover hidden collaborations