United States
United States

Time filter

Source Type

News Article | May 11, 2017
Site: www.rdmag.com

Man-made pollution in eastern China's cities worsens when less dust blows in from the Gobi Desert, according to a new study published May 11 in Nature Communications. Yes, you read that correctly: When less natural dust blows in, the air quality for millions of people worsens. That's because dust plays an important role in determining the air temperatures and thereby promoting winds to blow away man-made pollution. Less dust means the air stagnates, with man-made pollution becoming more concentrated and sticking around longer. The scientists found that reduced dust causes a 13 percent increase in man-made pollution over eastern China during the winter. Researchers say the broader question of how natural dust and man-made pollution interact is an important one for people across the globe, not just China. Many of the same forces that ease or worsen pollution in China are at play in many areas around the globe, including several cities in the United States. The paradoxical finding -- that more natural dust in the air improves air quality -- comes from a team of researchers from the Department of Energy's Pacific Northwest National Laboratory and Scripps Institution of Oceanography at the University of California at San Diego. Post-doctoral researcher Yang Yang of PNNL is first author of the paper, and Lynn Russell of Scripps is the corresponding author. In computer models together with historical data, the team found that reduced natural dust transported from the Gobi Desert in central and northern China translates to increased man-made air pollution in highly populated eastern China. The reason is that natural dust particles in the air help deflect sunlight. Fewer dust particles translates to a warmer-than-usual land surface and cooler-than-usual water. That reduces the temperature differential in winter between sea and the land, resulting in weaker winds -- and increased air stagnation. As a result, during the winter monsoon season, eastern China experiences weaker winds when there's less natural dust in the air. It's nothing a person would notice -- a reduction barely more than one-tenth of one mile per hour -- but on a large scale over an entire region, such a seemingly minor change has a profound effect on climate and air quality. "This is one of the first times we've really looked at the interactions between natural dust, wind, and anthropogenic pollution," said Yang. "It turns out that dust plays an important role in determining the quality of the air for many people in eastern China." The modeling results match observational data from dozen of sites in eastern China. The team found that two to three days after winds had brought dust into the region from western China, the air was cleaner than before the dust arrived. The researchers say man-made pollution is still the core of air pollution in cities like Beijing in eastern China but that it's important to understand the role of natural dust particles.


News Article | May 11, 2017
Site: www.eurekalert.org

Reduced dust slows winds, increases air stagnation over cities like Beijing; implications for US, other cities as well Man-made pollution in eastern China's cities worsens when less dust blows in from the Gobi Desert, according to a new study published May 11 in Nature Communications. Yes, you read that correctly: When less natural dust blows in, the air quality for millions of people worsens. That's because dust plays an important role in determining the air temperatures and thereby promoting winds to blow away man-made pollution. Less dust means the air stagnates, with man-made pollution becoming more concentrated and sticking around longer. The scientists found that reduced dust causes a 13 percent increase in man-made pollution over eastern China during the winter. Researchers say the broader question of how natural dust and man-made pollution interact is an important one for people across the globe, not just China. Many of the same forces that ease or worsen pollution in China are at play in many areas around the globe, including several cities in the United States. The paradoxical finding -- that more natural dust in the air improves air quality -- comes from a team of researchers from the Department of Energy's Pacific Northwest National Laboratory and Scripps Institution of Oceanography at the University of California at San Diego. Post-doctoral researcher Yang Yang of PNNL is first author of the paper, and Lynn Russell of Scripps is the corresponding author. In computer models together with historical data, the team found that reduced natural dust transported from the Gobi Desert in central and northern China translates to increased man-made air pollution in highly populated eastern China. The reason is that natural dust particles in the air help deflect sunlight. Fewer dust particles translates to a warmer-than-usual land surface and cooler-than-usual water. That reduces the temperature differential in winter between sea and the land, resulting in weaker winds -- and increased air stagnation. As a result, during the winter monsoon season, eastern China experiences weaker winds when there's less natural dust in the air. It's nothing a person would notice -- a reduction barely more than one-tenth of one mile per hour -- but on a large scale over an entire region, such a seemingly minor change has a profound effect on climate and air quality. "This is one of the first times we've really looked at the interactions between natural dust, wind, and anthropogenic pollution," said Yang. "It turns out that dust plays an important role in determining the quality of the air for many people in eastern China." The modeling results match observational data from dozen of sites in eastern China. The team found that two to three days after winds had brought dust into the region from western China, the air was cleaner than before the dust arrived. The researchers say man-made pollution is still the core of air pollution in cities like Beijing in eastern China but that it's important to understand the role of natural dust particles. In addition to authors from Scripps and PNNL, scientists from Nanjing University of Information Science and Technology and the Chinese Academy of Meteorological Sciences contributed to the study. Work was funded by the National Science Foundation and the Department of Energy Office of Science. Some of the research was performed at the National Energy Research Scientific Computing Center, an Office of Science national user facility on the campus of DOE's Lawrence Berkeley National Laboratory. Yang Yang, Lynn M. Russell, Sijia Lou, Hong Liao, Jianping Guo, Ying Liu, Balwinder Singh and Steven J. Ghan, Dust-wind interactions can intensify aerosol pollution over eastern China, Nature Communications, May 11, 2017, http://dx. .


News Article | May 11, 2017
Site: www.rdmag.com

Man-made pollution in eastern China's cities worsens when less dust blows in from the Gobi Desert, according to a new study published May 11 in Nature Communications. Yes, you read that correctly: When less natural dust blows in, the air quality for millions of people worsens. That's because dust plays an important role in determining the air temperatures and thereby promoting winds to blow away man-made pollution. Less dust means the air stagnates, with man-made pollution becoming more concentrated and sticking around longer. The scientists found that reduced dust causes a 13 percent increase in man-made pollution over eastern China during the winter. Researchers say the broader question of how natural dust and man-made pollution interact is an important one for people across the globe, not just China. Many of the same forces that ease or worsen pollution in China are at play in many areas around the globe, including several cities in the United States. The paradoxical finding -- that more natural dust in the air improves air quality -- comes from a team of researchers from the Department of Energy's Pacific Northwest National Laboratory and Scripps Institution of Oceanography at the University of California at San Diego. Post-doctoral researcher Yang Yang of PNNL is first author of the paper, and Lynn Russell of Scripps is the corresponding author. In computer models together with historical data, the team found that reduced natural dust transported from the Gobi Desert in central and northern China translates to increased man-made air pollution in highly populated eastern China. The reason is that natural dust particles in the air help deflect sunlight. Fewer dust particles translates to a warmer-than-usual land surface and cooler-than-usual water. That reduces the temperature differential in winter between sea and the land, resulting in weaker winds -- and increased air stagnation. As a result, during the winter monsoon season, eastern China experiences weaker winds when there's less natural dust in the air. It's nothing a person would notice -- a reduction barely more than one-tenth of one mile per hour -- but on a large scale over an entire region, such a seemingly minor change has a profound effect on climate and air quality. "This is one of the first times we've really looked at the interactions between natural dust, wind, and anthropogenic pollution," said Yang. "It turns out that dust plays an important role in determining the quality of the air for many people in eastern China." The modeling results match observational data from dozen of sites in eastern China. The team found that two to three days after winds had brought dust into the region from western China, the air was cleaner than before the dust arrived. The researchers say man-made pollution is still the core of air pollution in cities like Beijing in eastern China but that it's important to understand the role of natural dust particles.


News Article | May 11, 2017
Site: www.chromatographytechniques.com

Man-made pollution in eastern China's cities worsens when less dust blows in from the Gobi Desert, according to a new study published May 11 in Nature Communications. Yes, you read that correctly: When less natural dust blows in, the air quality for millions of people worsens. That's because dust plays an important role in determining the air temperatures and thereby promoting winds to blow away man-made pollution. Less dust means the air stagnates, with man-made pollution becoming more concentrated and sticking around longer. The scientists found that reduced dust causes a 13 percent increase in man-made pollution over eastern China during the winter. Researchers say the broader question of how natural dust and man-made pollution interact is an important one for people across the globe, not just China. Many of the same forces that ease or worsen pollution in China are at play in many areas around the globe, including several cities in the United States. The paradoxical finding -- that more natural dust in the air improves air quality -- comes from a team of researchers from the Department of Energy's Pacific Northwest National Laboratory and Scripps Institution of Oceanography at the University of California at San Diego. Post-doctoral researcher Yang Yang of PNNL is first author of the paper, and Lynn Russell of Scripps is the corresponding author. In computer models together with historical data, the team found that reduced natural dust transported from the Gobi Desert in central and northern China translates to increased man-made air pollution in highly populated eastern China. The reason is that natural dust particles in the air help deflect sunlight. Fewer dust particles translates to a warmer-than-usual land surface and cooler-than-usual water. That reduces the temperature differential in winter between sea and the land, resulting in weaker winds -- and increased air stagnation. As a result, during the winter monsoon season, eastern China experiences weaker winds when there's less natural dust in the air. It's nothing a person would notice -- a reduction barely more than one-tenth of one mile per hour -- but on a large scale over an entire region, such a seemingly minor change has a profound effect on climate and air quality. "This is one of the first times we've really looked at the interactions between natural dust, wind, and anthropogenic pollution," said Yang. "It turns out that dust plays an important role in determining the quality of the air for many people in eastern China." The modeling results match observational data from dozen of sites in eastern China. The team found that two to three days after winds had brought dust into the region from western China, the air was cleaner than before the dust arrived. The researchers say man-made pollution is still the core of air pollution in cities like Beijing in eastern China but that it's important to understand the role of natural dust particles.


News Article | May 26, 2017
Site: www.eurekalert.org

One of the biggest barriers in the commercial production of sustainable biofuels is to cost-effectively break down the bioenergy crops into sugars that can then be converted into fuel. To reduce this barrier, bioenergy researchers are looking to nature and the estimated 1.5 million species of fungi that, collectively, can break down almost any substance on earth, including plant biomass. As reported May 26, 2017 in Nature Microbiology, a team led by researchers at the University of California (UC), Santa Barbara has found for the first time that early lineages of fungi can form complexes of enzymes capable of degrading plant biomass. By consolidating these enzymes, in effect into protein assembly lines, they can team up to work more efficiently than they would as individuals. The work was enabled by harnessing the capabilities of two U.S. Department of Energy (DOE) Office of Science User Facilities, the DOE Joint Genome Institute (JGI) at Lawrence Berkeley National Laboratory (Berkeley Lab) and the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). "There are protein complexes in bacteria called cellulosomes that pack together the enzymes to break down plant biomass," said study senior author Michelle O'Malley of UC Santa Barbara. "The idea is that these clusters are better at attacking biomass because they are keeping the different enzymes in place with plugs called dockerins so they work more efficiently. This has been detailed in bacteria for more than 20 years, but now seen for the first time in fungi." With help from both the DOE JGI and EMSL, the team has now found protein complexes in anaerobic gut fungi that O'Malley said in principle do the same thing--attack plant biomass as a cluster of enzymes. While they found that many of enzymes in these complexes resulted from horizontal gene transfers with gut bacteria, they also noted differences in the composition compared to the bacterial cellulosomes. For one thing, both dockerins and scaffoldin are not similar between fungi and bacteria. Also, the bacterial cellulosomes are species-specific. Think of them as the high school clique that does everything together. In contrast, the fungal structures that appear analogous to the bacterial cellulosomes are like the high school kids who could easily move among various social groups and are comprised of clusters of enzymes that can "dock" and work in other fungi. The study involved a comparative genomics analyses of five fungi that belong to the Neocallimastigomycetes, a clade of the early-diverging lineages that are not well-studied. Three of the fungi were isolated from animal gut samples collected by the UC Santa Barbara team and sequenced and annotated by the DOE JGI. "Proteomics data and genomics data enabled us to figure out what these complexes are and go hunting for them in other genomes," O'Malley said. "The three genomes are really well resolved to the point where you can start looking at what's there, what's regulating enzyme production, and how enzymes have evolved." Study co-senior author and DOE JGI Fungal Genomics Program head Igor Grigoriev noted that a multi-omics approach that harnessed the genomics and molecular characterization capabilities through a collaborative science initiative allowing researchers to access multiple user facilities in one proposed project known as Facilities Integrating Collaborations for User Science (FICUS), was critical for the research. "It's the first time we've seen parts of the fungal cellulosome," Grigoriev said. "Through the JGI-EMSL FICUS initiative, proteomics allowed us to find the first of these really large ~700 kiloDaltons (kDa) fungal proteins that hold all enzymes together (compared to the molecular weight of 34 kDa of an average protein). Then the high quality of genome assemblies enabled identification of multiple copies of this protein in each of the gut fungi genomes. Just having proteomics or sequencing tools isn't enough since these proteins are not similar to anything else outside of Neocallimastigomycetes. Though the fungal cellulosome was discovered through proteomics, we needed genomics and transcriptomics to decode all its parts." The work is an extension of O'Malley's studies of anaerobic gut fungi, which appeared in Science last year (watch her talk from the 2016 DOE JGI Genomics of Energy & Environment Meeting at bit.ly/JGI2016OMalley). It's a lot of the same players, but we're digging deeper now because we have high-resolution genomes, and we didn't have them then," she said. "We're able to conduct more comparative genetics and now we're trying to figure out the ecological roles in their microbiome." Understanding in greater detail the protein mechanisms of biomass degradation is crucial to advancing DOE's agenda to develop sustainable biofuels from plant feedstocks. High throughput sequencing, combined with sophisticated proteomics, illuminates not just the diversity and complexity of fungal biomass degradation capacities but also furnishes a knowledge basis for exploitation of these abilities with synthetic biology and metabolic engineering approaches. Support for this work was provided by the DOE Office of Science, including an Early Career Research Program award, as well as the National Science Foundation, the U.S. Department of Agriculture, the U.S. Army Research Office, and the University of California. The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @doe_jgi on Twitter. EMSL, the Environmental Molecular Sciences Laboratory, is a DOE Office of Science User Facility. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies. Follow EMSL on Facebook, LinkedIn and Twitter. Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter. DOE's Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


News Article | May 29, 2017
Site: phys.org

PNNL researchers recently collected snake-like lamprey fish at a local dam and tagged them with PNNL's super-small tracking tag designed just for juvenile lamprey. A PNNL researcher is shown here releasing some of the tagged fish in a river so she can track their movements. Credit: Pacific Northwest National Laboratory Most people think of salmon jumping upriver to spawn when they consider wild fish in the American Northwest. But another, lesser-known species—the Pacific Lamprey—is also culturally and historically important to the region. Lamprey have been on Earth at least 400 million years, which is significantly longer than salmon and even dinosaurs. Researchers at the Department of Energy's Pacific Northwest National Laboratory are striving to learn more about the snake-like lamprey and its East Coast cousin, the American eel. This spring, researchers tagged fish collected at a local dam with PNNL's super-small acoustic tag designed just for juvenile lamprey. Tagged fish have been released and researchers will track their movements so we can better understand how man-made structures such as dams affect them. This marks the first time PNNL's lamprey tag has been tested in the field. PNNL's special lamprey tag weighs just 0.08 grams—less than a paperclip—and is designed to be injected with a syringe under a young fish's skin. It's the smallest fish tag that's part of PNNL's larger Juvenile Salmon Acoustic Telemetry System, which PNNL has been developing since 2001 to improve fish-tracking technologies. Explore further: Powered for life: Self-charging tag tracks fish as long as they swim


News Article | May 26, 2017
Site: phys.org

As reported May 26, 2017 in Nature Microbiology, a team led by researchers at the University of California (UC), Santa Barbara has found for the first time that early lineages of fungi can form complexes of enzymes capable of degrading plant biomass. By consolidating these enzymes, in effect into protein assembly lines, they can team up to work more efficiently than they would as individuals. The work was enabled by harnessing the capabilities of two U.S. Department of Energy (DOE) Office of Science User Facilities, the DOE Joint Genome Institute (JGI) at Lawrence Berkeley National Laboratory (Berkeley Lab) and the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). "There are protein complexes in bacteria called cellulosomes that pack together the enzymes to break down plant biomass," said study senior author Michelle O'Malley of UC Santa Barbara. "The idea is that these clusters are better at attacking biomass because they are keeping the different enzymes in place with plugs called dockerins so they work more efficiently. This has been detailed in bacteria for more than 20 years, but now seen for the first time in fungi." With help from both the DOE JGI and EMSL, the team has now found protein complexes in anaerobic gut fungi that O'Malley said in principle do the same thing—attack plant biomass as a cluster of enzymes. While they found that many of enzymes in these complexes resulted from horizontal gene transfers with gut bacteria, they also noted differences in the composition compared to the bacterial cellulosomes. For one thing, both dockerins and scaffoldin are not similar between fungi and bacteria. Also, the bacterial cellulosomes are species-specific. Think of them as the high school clique that does everything together. In contrast, the fungal structures that appear analogous to the bacterial cellulosomes are like the high school kids who could easily move among various social groups and are comprised of clusters of enzymes that can "dock" and work in other fungi. The study involved a comparative genomics analyses of five fungi that belong to the Neocallimastigomycetes, a clade of the early-diverging lineages that are not well-studied. Three of the fungi were isolated from animal gut samples collected by the UC Santa Barbara team and sequenced and annotated by the DOE JGI. "Proteomics data and genomics data enabled us to figure out what these complexes are and go hunting for them in other genomes," O'Malley said. "The three genomes are really well resolved to the point where you can start looking at what's there, what's regulating enzyme production, and how enzymes have evolved." Study co-senior author and DOE JGI Fungal Genomics Program head Igor Grigoriev noted that a multi-omics approach that harnessed the genomics and molecular characterization capabilities through a collaborative science initiative allowing researchers to access multiple user facilities in one proposed project known as Facilities Integrating Collaborations for User Science (FICUS), was critical for the research. "It's the first time we've seen parts of the fungal cellulosome," Grigoriev said. "Through the JGI-EMSL FICUS initiative, proteomics allowed us to find the first of these really large ~700 kiloDaltons (kDa) fungal proteins that hold all enzymes together (compared to the molecular weight of 34 kDa of an average protein). Then the high quality of genome assemblies enabled identification of multiple copies of this protein in each of the gut fungi genomes. Just having proteomics or sequencing tools isn't enough since these proteins are not similar to anything else outside of Neocallimastigomycetes. Though the fungal cellulosome was discovered through proteomics, we needed genomics and transcriptomics to decode all its parts." The work is an extension of O'Malley's studies of anaerobic gut fungi, which appeared in Science last year (watch her talk from the 2016 DOE JGI Genomics of Energy & Environment Meeting at bit.ly/JGI2016OMalley). It's a lot of the same players, but we're digging deeper now because we have high-resolution genomes, and we didn't have them then," she said. "We're able to conduct more comparative genetics and now we're trying to figure out the ecological roles in their microbiome." Understanding in greater detail the protein mechanisms of biomass degradation is crucial to advancing DOE's agenda to develop sustainable biofuels from plant feedstocks. High throughput sequencing, combined with sophisticated proteomics, illuminates not just the diversity and complexity of fungal biomass degradation capacities but also furnishes a knowledge basis for exploitation of these abilities with synthetic biology and metabolic engineering approaches. Explore further: Finding a new major gene expression regulator in fungi More information: Charles H. Haitjema et al, A parts list for fungal cellulosomes revealed by comparative genomics, Nature Microbiology (2017). DOI: 10.1038/nmicrobiol.2017.87


News Article | June 23, 2017
Site: www.eurekalert.org

RICHLAND, Wash. - Like driving a car despite a glowing check-engine light, large buildings often chug along without maintenance being performed on the building controls designed to keep them running smoothly. And sometimes those controls aren't used to their full potential, similar to a car at high speed in first gear. Instead of an expensive visit to the mechanic, the result for a commercial building is a high power bill. A new report finds that if commercial buildings fully used controls nationwide, the U.S. could slash its energy consumption by the equivalent of what is currently used by 12 to 15 million Americans. The report examines how 34 different energy efficiency measures, most of which rely on various building controls, could affect energy use in commercial buildings such as stores, offices and schools. Researchers at the Department of Energy's Pacific Northwest National Laboratory found the measures could cut annual commercial building energy use by an average of 29 percent. This would result in between 4 to 5 quadrillion British Thermal Units in national energy savings, which is about 4 to 5 percent of the energy consumed nationwide. "Most large commercial buildings are already equipped with building automation systems that deploy controls to manage building energy use," said report co-author and PNNL engineer Srinivas Katipamula. "But those controls often aren't properly programmed and are allowed to deteriorate over time, creating unnecessarily large power bills. "Our research found significant nationwide energy savings are possible if all U.S. commercial building owners periodically looked for and corrected operational problems such as air-conditioning systems running too long." The report offers the first detailed, national benefit analysis of multiple energy efficiency measures to address building operational problems. Many of these problems can be corrected with very little effort. Unlike other practices that require expensive new technologies, most of the measures evaluated improve energy efficiency by enabling already-installed equipment to work better. Roughly 20 percent of America's total energy use goes toward powering commercial buildings. And about 15 percent of U.S. commercial buildings have building automation systems that deploy controls, such as sensors that turn on lights or heating a room only when it's occupied. As a result, helping commercial buildings better use their controls could profoundly slash America's overall energy consumption. Katipamula and his colleagues examined the potential impact of 34 individual energy efficiency measures that can improve commercial building performance, including: Because combining individual measures can increase energy savings, the researchers also estimated the impacts of packaging energy efficiency measures together. PNNL designed packages of combined measures based on the needs of three different building conditions: buildings already efficient and with little room for improvement, inefficient buildings with a lot of room for improvement, and typical buildings in the middle. PNNL used computer models of nine prototypical commercial buildings, and extrapolated them to represent five other, similar buildings so it could evaluate energy use in a total of 14 building types. The research team used these prototypical building models with DOE's EnergyPlus building software, which calculated potential energy use given local weather and whichever energy efficiency measures were applied. Of the individual efficiency measures studied, those with the greatest energy-saving potential nationwide were: Though the study found all commercial buildings across all climates could have an average total energy savings of 29 percent, some building types were found to have the potential to save more, such as: As expected, researchers found inefficient buildings have the greatest potential to save energy. After estimating how common each building condition is in the U.S., researchers found combined efficiency measure packages have the following potential national energy saving ranges: The Department of Energy's Office of Energy Efficiency and Renewable Energy funded this research. REFERENCE: N. Fernandez, S. Katipamula, W. Wang, Y. Xie, M. Zhao, C. Corgin, "Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction," PNNL report to DOE, May 2017, http://buildingretuning. . Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, Instagram, LinkedIn, and Twitter.


News Article | June 1, 2017
Site: www.eurekalert.org

RICHLAND, Wash./BERKELEY, Calif. - The knowledge and expertise of a seasoned energy efficiency professional has been packed into a high-tech suitcase. The Sensor Suitcase is a portable case that contains easy-to-use sensors and other equipment that make it possible for anyone to identify energy-saving opportunities in small commercial buildings. The automated and reusable system combines hardware and software in one package so its users can identify cost-effective measures that save small commercial buildings about 10 percent on their energy bills. Jointly developed by two Department of Energy labs, Pacific Northwest National Laboratory and Lawrence Berkeley National Laboratory, the Sensor Suitcase has been licensed by two companies that plan to provide products or services based on the technology. The licensees are GreenPath Energy Solutions and Cultural Quotient. "Most small commercial building owners believe it costs too much to make their facilities significantly more energy efficient," said scientist Michael Brambley, who led PNNL's development team. "But the Sensor Suitcase system can change that. It helps someone with minimal training collect and automatically process building data, which the system uses to generate specific recommendations to improve energy efficiency. The U.S. could reduce its national energy costs by about $5.1 billion if all small commercial buildings used this technology." Implementing energy efficiency measures in small commercial buildings has been notoriously difficult, said mechanical engineer Jessica Granderson, who led Berkeley Lab's development team. "The real innovation is in the streamlining," said Granderson, who is also a deputy director of Berkeley Lab's Building Technology and Urban Systems Division. "It's kind of like the 'for dummies' version of how to identify improvements in your building. Instead of hiring a professional engineer to conduct a full energy evaluation, you could get just about anyone to do it." The Sensor Suitcase is designed to reduce energy use in existing buildings by finding ways to improve the way they operate, a practice energy-efficiency professionals call "retro-commissioning." Large commercial buildings often have the resources needed for retro-commissioning, while smaller buildings with 50,000 square feet or less don't. PNNL and Berkeley Lab developed the Sensor Suitcase to overcome that hurdle. Inside the suitcase sit 16 pocket-sized sensors that can measure three things: temperature, whether lights are on or off, and how a heating and cooling system is operating. Users follow clear instructions from the Sensor Suitcase's operations software, which runs on a separate tablet, to install sensors inside a building. About a month later, users gather the sensors and return them to the suitcase, which users then connect to a personal computer so they can transfer the collected energy data. The system's unique analytical software is used to automatically crunch the sensor data, eliminating the need to hire a professional to manually plot, inspect and interpret data. The final result is a report that identifies problems (such as excessive lighting), recommends low- and no-cost ways to fix problems (such as installing occupancy sensors that turn lights on only when a room is being used), and provides estimated cost savings for addressing each problem. The Sensor Suitcase system focuses on eight of the most common and cost-effective areas to improve energy efficiency in small commercial buildings. As a result, it can help building owners save about two-thirds of the energy that can be saved with the traditional approach to retro-commissioning, which requires the hands-on labor of several energy-efficiency professionals, who are often engineers. Conducting a traditional retro-commissioning assessment takes six months or longer, while doing the same assessment with a Sensor Suitcase takes four to six weeks and costs about a third of traditional retro-commissioning services. Small building owners can buy and use the Sensor Suitcase themselves, but it will likely be more practical for them to hire an outside company that provides services based on the technology. Additionally, utilities could lend the technology to commercial building-owning customers or otherwise encourage its use. Though the Sensor Suitcase is intended for small commercial buildings, it could also be used to supplement energy retrofits at large commercial buildings. GreenPath Energy Solutions of Orlando, Fla., a provider of energy-efficient building solutions, will offer both a product and services with the Sensor Suitcase technology. The company helps facility managers and building owners control their operational, energy and facility costs by providing energy auditing, retro-commissioning and software solutions. GreenPath plans to market its product and services to federal, state and local governments through its GSA Schedule contract with the General Services Administration. Cultural Quotient of Arlington, Va., will offer a product based on the technology. The company will make and sell its product as a partner with the manufacturing firm Zepher, Inc., of Bingen, Wash. CQ Corporation is also partnered with the Chicago-based nonprofit Invent2026 to sell CQ's Sensor Suitcase-based product to local and state government entities in the Midwest, as many small businesses lease or occupy local government-owned buildings. Both licenses are non-exclusive, meaning the Sensor Suitcase technology is also available for other companies to license. Those interested in learning more about a license can contact Jenn Lee at Jennifer.Lee@pnnl.gov. PNNL and Berkeley Lab jointly developed the Sensor Suitcase concept, with PNNL focusing on the technology's hardware and tablet software and Berkeley Lab focusing on its analytics software. DOE's Oak Ridge National Laboratory helped create the technology's sensors for its second prototype. The technology's development was supported by DOE's Office of Energy Efficiency and Renewable Energy. Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, Instagram, LinkedIn and Twitter. Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www. .


Grant
Agency: Department of Energy | Branch: | Program: STTR | Phase: Phase I | Award Amount: 149.88K | Year: 2015

The longevity requirements and number of dry storage systems, employed for storage of used nuclear fuel, necessitate the deployment of sensor technologies to support aging management programs and ensure safe disposal of used nuclear fuel at the end of dry storage terms. This effort seeks to increase the value and effectiveness of dry storage system inspections with the application of readily available technologies to gain significant information regarding the state of the internal canister structural integrity or environmental conditions. Global Technology Connection, Inc. GTC), in collaboration with its partners Pacific Northwest National Laboratory, Savannah River National Laboratory & NAC) , proposes to address the surveillance needs of dry storage systems already deployed in the field as well as future systems. The team will develop methods for sensing internal cask parameters using externally mounted ultrasonic sensors for currently deployed dry storage systems. For future cask systems, the team will focus on demonstrating a framework to enable monitoring of internal cask parameters with greater fidelity through the use of sensors mounted inside of dry storage systems and acoustic modems to transmit information through container walls without the need for penetration. In total, this represents a comprehensive approach to addressing the needs for monitoring the state of used fuel in long term dry storage and will have tremendous public benefit. The Phase I efforts will focus on identifying ultrasonic techniques using externally mounted sensors for measuring variables of interest inside of dry storage systems and determining design criteria for application of identified techniques to currently deployed dry storage systems. In addition, tabulation of readily available sensing technologies that meet the requirements for placement inside of dry storage systems will be created and a down-select process will identify a few candidate sensing technologies from this list that will be used to demonstrate in Phase II. The resulting technology from this effort can be applied to wide range of applications employed for monitoring of machinery and structural components. The commercial intent is to produce low-rate production quantities for commercial markets. Potential commercial applications include diagnostics/prognostics of machinery and structural health monitoring.

Loading PNNL collaborators
Loading PNNL collaborators