PML Applications

Plymouth, United Kingdom

PML Applications

Plymouth, United Kingdom
Time filter
Source Type

Thomas S.F.,PML Applications | Rooks P.,Plymouth Marine Laboratory | Rudin F.,PML Applications | Cagney N.,University College London | And 6 more authors.
Journal of Water Process Engineering | Year: 2015

Despite the increasing use of Decentralised Waste Water Systems (DEWATS) in the developing world, which effectively dewater sludge, the problem of preventing the pathogen-laden water produced by these systems from re-entering the food chain constitutes a continuing burden on developing countries, which hinders subsequent advancements. We report on a swirl flow reactor generating high mixing areas which in conjunction with Cu/alginate beads effectively reduces Escherichia coli numbers by five orders of magnitude in 10. min. The system is simple, low cost, portable and modular; it can be assembled with simple plastic plumbing parts available in most areas and, once further developed, may represent a useful adjunct for both existing and new DEWATS facilities. © 2014 Elsevier Ltd.

Thomas S.F.,PML Applications | Rooks P.,Plymouth Marine Laboratory | Rudin F.,PML Applications | Atkinson S.,Plymouth Marine Laboratory | And 4 more authors.
PLoS ONE | Year: 2014

We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UVC resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries. © 2014 Thomas et al.

PubMed | PML Applications, North Technologies, Beaumont Design, PriMove Infrastructure Development Consultants Pvt. Ltd and 3 more.
Type: | Journal: Scientific reports | Year: 2015

It is estimated that approximately 1.1 billion people globally drink unsafe water. We previously reported both a novel copper-alginate bead, which quickly reduces pathogen loading in waste streams and the incorporation of these beads into a novel swirl flow bioreactor (SFB), of low capital and running costs and of simple construction from commercially available plumbing pipes and fittings. The purpose of the present study was to trial this system for pathogen reduction in waste streams from an operating Dewats system in Hinjewadi, Pune, India and in both simulated and real waste streams in Seattle, Washington, USA. The trials in India, showed a complete inactivation of coliforms in the discharged effluent (Mean Log removal Value (MLRV) = 3.51), accompanied by a total inactivation of E. coli with a MLRV of 1.95. The secondary clarifier effluent also showed a 4.38 MLRV in viable coliforms during treatment. However, the system was slightly less effective in reducing E. coli viability, with a MLRV of 1.80. The trials in Seattle also demonstrated the efficacy of the system in the reduction of viable bacteria, with a LRV of 5.67 observed of viable Raoultella terrigena cells (100%).

Fernandes J.A.,Plymouth Marine Laboratory | Santos L.,Plymouth Marine Laboratory | Vance T.,PML Applications | Fileman T.,PML Applications | And 8 more authors.
Marine Policy | Year: 2016

Maritime transport and shipping are impacted negatively by biofouling, which can result in increased fuel consumption. Thus, costs for fouling reduction can be considered an investment to reduce fuel consumption. Anti-fouling measures also reduce the rate of introduction of non-indigenous species (NIS). Further mitigation measures to reduce the transport of NIS within ballast water and sediments impose additional costs. The estimated operational cost of NIS mitigation measures may represent between 1.6% and 4% of the annual operational cost for a ship operating on European seas, with the higher proportional costs in small ships. However, fouling by NIS may affect fuel consumption more than fouling by native species due to differences in species' life-history traits and their resistance to antifouling coatings and pollution. Therefore, it is possible that the cost of NIS mitigation measures could be smaller than the cost from higher fuel consumption arising from fouling by NIS. © 2015 Elsevier Ltd.

Loading PML Applications collaborators
Loading PML Applications collaborators