Entity

Time filter

Source Type

Plymouth, United Kingdom

Plymouth Marine Laboratory in the city of Plymouth, England is an independent collaborative centre of the Natural Environment Research Council . PML's Chairman is Terence Lewis and PML's Chief Executive is Prof. Stephen de Mora.They focus global issues of global warming and sustainability. They monitor the effects of ocean acidity on corals and shellfish and report this information to the UK government. It also cultivates algae that could be used to make biofuels or in the treatment of waste water by using technology such as photo-bioreactors. They work alongside the Boots Group to investigate the usage of algae in skin care protects, because of their content of compounds that adapt to protect themselves from the sun.PML has a wholly owned trading subsidiary, PML Applications Ltd, which has been created to facilitate the exploitation and application of PML research and its products and to provide a more appropriate interface for working with end users, industrial and commercial partners.Core Capabilities:Biogeochemistry and systems science, Health of the environment and human health, Sustainable ecosystems and biodiversityCross-cutting capabilities:Earth observation, Modelling, Microbial ecology, Molecular science, Blue biotechnology, Technical solutions, Socio-economics, Policy advice Wikipedia.


Rees A.P.,Plymouth Marine Laboratory
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences | Year: 2012

The oceans are under pressure from human activities. Following 250 years of industrial activity, effects are being seen at the cellular through to regional and global scales. The change in atmospheric CO2 from 280 ppm in pre-industrial times to 392 ppm in 2011 has contributed to the warming of the upper 700m of the ocean by approximately 0.1°C between 1961 and 2003, to changes in sea water chemistry, which include a pH decrease of approximately 0.1, and to significant decreases in the sea water oxygen content. In parallel with these changes, the human population has been introducing an ever-increasing level of nutrients into coastal waters, which leads to eutrophication, and by 2008 had resulted in 245 000 km2 of severely oxygen-depleted waters throughout the world. These changes are set to continue for the foreseeable future, with atmospheric CO2 predicted to reach 430 ppm by 2030 and 750 ppm by 2100. The cycling of biogeochemical elements has proved sensitive to each of these effects, and it is proposed that synergy between stressors may compound this further. The challenge, within the next few decades, for the marine science community, is to elucidate the scope and extent that biological processes can adapt or acclimatize to a changing chemical and physical marine environment. © 2012 The Royal Society. Source


Carpenter L.J.,University of York | Archer S.D.,Bigelow Laboratory for Ocean Sciences | Beale R.,Plymouth Marine Laboratory
Chemical Society Reviews | Year: 2012

The oceans contribute significantly to the global emissions of a number of atmospherically important volatile gases, notably those containing sulfur, nitrogen and halogens. Such gases play critical roles not only in global biogeochemical cycling but also in a wide range of atmospheric processes including marine aerosol formation and modification, tropospheric ozone formation and destruction, photooxidant cycling and stratospheric ozone loss. A number of marine emissions are greenhouse gases, others influence the Earth's radiative budget indirectly through aerosol formation and/or by modifying oxidant levels and thus changing the atmospheric lifetime of gases such as methane. In this article we review current literature concerning the physical, chemical and biological controls on the sea-air emissions of a wide range of gases including dimethyl sulphide (DMS), halocarbons, nitrogen-containing gases including ammonia (NH3), amines (including dimethylamine, DMA, and diethylamine, DEA), alkyl nitrates (RONO2) and nitrous oxide (N 2O), non-methane hydrocarbons (NMHC) including isoprene and oxygenated (O)VOCs, methane (CH4) and carbon monoxide (CO). Where possible we review the current global emission budgets of these gases as well as known mechanisms for their formation and loss in the surface ocean. © The Royal Society of Chemistry 2012. Source


Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ≈ 20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean's largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater. Source


Tait K.,Plymouth Marine Laboratory | Havenhand J.,Gothenburg University
Molecular Ecology | Year: 2013

Increased settlement on bacterial biofilms has been demonstrated for a number of marine invertebrate larvae, but the nature of the cue(s) responsible is not well understood. We tested the hypothesis that the bay barnacle Balanus improvisus utilizes the bacterial signal molecules N-acylhomoserine lactones (AHLs) as a cue for the selection of sites for permanent attachment. Single species biofilms of the AHL-producing bacteria Vibrio anguillarum, Aeromonas hydrophila and Sulfitobacter sp. BR1 were attractive to settling cypris larvae of B. improvisus. However, when AHL production was inactivated, either by mutation of the AHL synthetic genes or by expression of an AHL-degrading gene (aiiA), the ability of the bacteria to attract cyprids was abolished. In addition, cyprids actively explored biofilms of E. coli expressing the recombinant AHL synthase genes luxI from Vibrio fischeri (3-oxo-C6-HSL), rhlI from Pseudomonas aeruginosa (C4-HSL/C6-HSL), vanI from V. anguillarum (3-oxo-C10-HSL) and sulI from Sulfitobacter sp. BR1 (C4-HSL, 3-hydroxy-C6-HSL, C8-HSL and 3-hydroxy-C10-HSL), but not E. coli that did not produce AHLs. Finally, synthetic AHLs (C8-HSL, 3-oxo-C10-HSL and C12-HSL) at concentrations similar to those found within natural biofilms (5 μm) resulted in increased cyprid settlement. Thus, B. improvisus cypris exploration of and settlement on biofilms appears to be mediated by AHL-signalling bacteria in the laboratory. This adds to our understanding of how quorum sensing inhibition may be used as for biofouling control. Nonetheless, the significance of our results for larvae settling naturally in the field, and the mechanisms that underlay the observed responses to AHLs, is as yet unknown. © 2013 Blackwell Publishing Ltd. Source


Smyth T.J.,Plymouth Marine Laboratory
Journal of Geophysical Research: Oceans | Year: 2011

A new global ocean-atmosphere model has been developed to determine the penetration of ultraviolet (UV) radiation through the water column. This is accomplished by combining an atmospheric UV irradiance model, taking into consideration the effects of aerosols, clouds, and the air-sea interface, with empirical in-water diffuse attenuation coefficient (Kd( UV)) relationships. These empirical relationships are derived from simultaneous in situ profiles of visible wavelength inherent optical properties and downwelling UV irradiances. The combined model is applied to global data sets using a look-up table approach to speed up calculation time. The atmospheric model compared against ∼3000 data points gave a root-mean-square error (RMSE) of between 10% and 15% at wavelengths of 305, 325, 340, and 380 nm; the coupled global model compared against 30 independent in-water irradiance profiles gave a logarithmic RMSE of between 0.15 and 0.35 at these wavelengths. On the global scale the 10% irradiance levels were found to be deepest in the oceanic gyres (∼18, 32, 44, and 70 m at 305, 325, 340 and 380 nm, respectively) and shallowest in the optically complex continental shelf regions. The calculated UV doses were shown to be spectrally and seasonally variable, with the highest values being encountered in the eastern Mediterranean during July, with values of ∼0.5, 4, 7, and 10 kJ m-2 d-1 nm-1 at 305, 325, 340, and 380 nm, respectively. Copyright 2011 by the American Geophysical Union. Source

Discover hidden collaborations