Time filter

Source Type

Le Touquet – Paris-Plage, France

Rambow F.,Institute Curie | Rambow F.,French National Center for Scientific Research | Rambow F.,French Institute of Health and Medical Research | Rambow F.,Equipe labellisee Ligue Nationale Contre le Cancer | And 25 more authors.
Cell Reports | Year: 2015

Molecular signatures specific to particular tumor types are required to design treatments for resistant tumors. However, it remains unclear whether tumors and corresponding cell lines used for drug development share such signatures. We developed similarity core analysis (SCA), a universal and unsupervised computational framework for extracting core molecular features common to tumors and cell lines. We applied SCA to mRNA/miRNA expression data from various sources, comparing melanoma cell lines and metastases. The signature obtained was associated with phenotypic characteristics in vitro, and the core genes CAPN3 and TRIM63 were implicated in melanoma cell migration/invasion. About 90% of the melanoma signature genes belong to an intrinsic network of transcription factors governing neural development (TFAP2A, DLX2, ALX1, MITF, PAX3, SOX10, LEF1, and GAS7) and miRNAs (211-5p, 221-3p, and 10a-5p). The SCA signature effectively discriminated between two subpopulations of melanoma patients differing in overall survival, and classified MEKi/BRAFi-resistant and -sensitive melanoma cell lines. © 2015 The Authors. Source

Roussel H.W.,Institute National Of La Sante Et Of La Recherche Medicale Unite 1016 | Roussel H.W.,French National Center for Scientific Research | Roussel H.W.,University of Paris Descartes | Vezzosi D.,Institute National Of La Sante Et Of La Recherche Medicale Unite 1016 | And 22 more authors.
Journal of Clinical Endocrinology and Metabolism | Year: 2013

Context: The cortisol secretion of adrenocortical adenomas can be either subtle or overt. The mechanisms leading to the autonomous hypersecretion of cortisol are unknown. Objective: The objective of the study was to identify the gene expression profile associated with the autonomous and excessive cortisol secretion of adrenocortical adenomas. Patients and Methods: The transcriptome of 22 unilateral adrenocortical adenomas (5 nonsecreting, 6 subclinical cortisol producing, 11 cortisol producing) was studied and correlated with cortisol secretion. Phosphodiesterase 8B (PDE8B) expression was measured by Western blot. Results: Unsupervised clustering identified 2 groups of adenomas with a difference in secretion level (P = .008). Cluster 1 included only cortisol-producing adenomas (8 of 11), whereas cluster 2 was an admixture of the nonsecreting, the subclinical cortisol-secreting, and 3 of the 11 cortisol-secreting adenomas (Fisher exact, P = .002). This cluster was driven by genes related to cortisol secretion and to extracellular matrix. More than 3000 genes correlated with cortisol secretion. Among the positively correlated were the steroidogenic enzymes, genes involved in cholesterol metabolism, and glutathione S-transferases. Among the negatively correlated genes were genes related to transcripts translation and the transcription factor GATA-6. The PDE8B, which inactivates the protein kinase A pathway, unexpectedly showed the strongest positive correlation with cortisol secretion, confirmed by Western blot. The protein kinase A-activity to cAMP ratio was increased in adenomas with high PDE8B levels, suggesting counterregulation to limit downstream activation of the pathway. Conclusion: The transcriptome of adrenocortical adenomas reveals a major association with cortisol secretion and identifies specific groups of genes implicated in steroid secretion, suggesting that cAMP signaling alterations might be frequent in cortisol-secreting adenomas. Copyright © 2013 by The Endocrine Society. Source

Rambow F.,French Institute of Health and Medical Research | Rambow F.,University Paris - Sud | Rambow F.,Equipe Labellisee Ligue Contre le Cancer | Bechadergue A.,French Institute of Health and Medical Research | And 19 more authors.
Journal of Investigative Dermatology | Year: 2016

Melanoma progression from a primary lesion to a distant metastasis is a complex process associated with genetic alterations, epigenetic modifications, and phenotypic switches. Elucidation of these phenomena may indicate how to interfere with this fatal disease. The role of microRNAs as key negative regulators of gene expression, controlling all cellular processes including cell migration and invasion, is now being recognized. Here, we used in silico analysis of microRNA expression profiles of primary and metastatic melanomas and functional experiments to show that microRNA-125b (miR-125b) is a determinant candidate of melanoma progression: (i) miR-125b is more strongly expressed in aggressive metastatic than primary melanomas, (ii) there is an inverse correlation between the amount of miR-125b and overall patient survival, (iii) invasion/migration potentials in vitro are inversely correlated with the amount of miR-125b in a series of human melanoma cell lines, and (iv) inhibition of miR-125b reduces migratory and invasive potentials without affecting cell proliferation in vitro. Furthermore, we show that neural precursor cell expressed developmentally down-regulated protein 9 (i.e., NEDD9) is a direct target of miR-125b and is involved in modulating melanoma cell migration and invasion. Also, transcription factor 4, associated with epithelial-mesenchymal transition and invasion, induces the transcription of miR-125b-1. In conclusion, the transcription factor 4/miR-125b/NEDD9 cascade promotes melanoma cell migration/invasion. © 2016 The Authors Source

Discover hidden collaborations