Entity

Time filter

Source Type

Raleigh, NC, United States

Zobel R.W.,Plant Science Research Unit
Frontiers in Plant Science | Year: 2016

The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of these classes of root. This then suggests that Arabidopsis root research can be considered an adequate model for dicot plant root systems. © 2016 Zobel. Source


Wang G.-F.,North Carolina State University | He Y.,North Carolina State University | Strauch R.,North Carolina State University | Olukolu B.A.,North Carolina State University | And 4 more authors.
Plant Physiology | Year: 2015

In plants, most disease resistance genes encode nucleotide binding Leu-rich repeat (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) upon pathogen recognition. The maize (Zea mays) NLR protein Rp1-D21 derives from an intragenic recombination between two NLRs, Rp1-D and Rp1-dp2, and confers an autoactive HR in the absence of pathogen infection. From a previous quantitative trait loci and genome-wide association study, we identified a single-nucleotide polymorphism locus highly associated with variation in the severity of Rp1-D21-induced HR. Two maize genes encoding hydroxycinnamoyltransferase (HCT; a key enzyme involved in lignin biosynthesis) homologs, termed HCT1806 and HCT4918, were adjacent to this single-nucleotide polymorphism. Here, we show that both HCT1806 and HCT4918 physically interact with and suppress the HR conferred by Rp1-D21 but not other autoactive NLRs when transiently coexpressed in Nicotiana benthamiana. Other maize HCT homologs are unable to confer the same level of suppression on Rp1-D21-induced HR. The metabolic activity of HCT1806 and HCT4918 is unlikely to be necessary for their role in suppressing HR. We show that the lignin pathway is activated by Rp1-D21 at both the transcriptional and metabolic levels. We derive a model to explain the roles of HCT1806 and HCT4918 in Rp1-mediated disease resistance. © 2015 American Society of Plant Biologists. All Rights Reserved. Source


Jiang K.,University of North Carolina at Chapel Hill | Frick-Cheng A.,University of North Carolina at Chapel Hill | Trusov Y.,University of Queensland | Delgado-Cerezo M.,Technical University of Madrid | And 9 more authors.
Plant Physiology | Year: 2012

The heterotrimeric G-protein complex provides signal amplification and target specificity. The Arabidopsis (Arabidopsis thaliana) Gb-subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its targets. Important surface residues of AGB1, which were deduced from a comparative evolutionary approach, were mutated to dissect AGB1-dependent physiological functions. Analysis of the capacity of these mutants to complement well-established phenotypes of Gβ-null mutants revealed AGB1 residues critical for specific AGB1-mediated biological processes, including growth architecture, pathogen resistance, stomata-mediated leaf-air gas exchange, and possibly photosynthesis. These findings provide promising new avenues to direct the finely tuned engineering of crop yield and traits. © 2012 American Society of Plant Biologists. All Rights Reserved. Source


Bolon Y.-T.,University of Minnesota | Stec A.O.,University of Minnesota | Michno J.-M.,University of Minnesota | Roessler J.,University of Minnesota | And 15 more authors.
Genetics | Year: 2014

Fast neutron radiation has been used as a mutagen to develop extensive mutant collections. However, the genome-wide structural consequences of fast neutron radiation are not well understood. Here, we examine the genome-wide structural variants observed among 264 soybean [Glycine max (L.) Merrill] plants sampled from a large fast neutron-mutagenized population. While deletion rates were similar to previous reports, surprisingly high rates of segmental duplication were also found throughout the genome. Duplication coverage extended across entire chromosomes and often prevailed at chromosome ends. High-throughput resequencing analysis of selected mutants resolved specific chromosomal events, including the rearrangement junctions for a large deletion, a tandem duplication, and a translocation. Genetic mapping associated a large deletion on chromosome 10 with a quantitative change in seed composition for one mutant. A tandem duplication event, located on chromosome 17 in a second mutant, was found to cosegregate with a short petiole mutant phenotype, and thus may serve as an example of a morphological change attributable to a DNA copy number gain. Overall, this study provides insight into the resilience of the soybean genome, the patterns of structural variation resulting from fast neutron mutagenesis, and the utility of fast neutron-irradiated mutants as a source of novel genetic losses and gains. © 2014 by the Genetics Society of America. Source


Burton A.L.,Plant Science Research Unit | Burkey K.O.,Plant Science Research Unit | Burkey K.O.,North Carolina State University | Carter T.E.,Soybean and Nitrogen Fixation Unit | And 3 more authors.
Theoretical and Applied Genetics | Year: 2016

Key message: Soybean quantitative trait loci for ozone response.Abstract: Ground-level ozone reduces yield in crops such as soybean (Glycine max (L.) Merr.). Phenotypic variation has been observed for this trait in multiple species; however, breeding for ozone tolerance has been limited. A recombinant inbred population was developed from soybean genotypes differing in tolerance to ozone: tolerant Fiskeby III and sensitive Mandarin (Ottawa). Plants were exposed to ozone treatment for 5 days in greenhouse chambers followed by visual scoring for foliar injury. Mean injury score in the mid-canopy was 16 % for Fiskeby III, and 81 % for Mandarin (Ottawa). Injury scores were lower in younger leaves for both parents and progeny, compared to scores in the older leaves. Segregation was consistent with multigenic inheritance. Correlation coefficients for injury between leaf positions ranged from 0.34 to 0.81, with the closer leaf positions showing the greater correlation. Narrow sense heritability within an ozone treatment chamber was 0.59, 0.40, 0.29, 0.30, 0.19, and 0.35 for the 2nd, 3rd, 4th, 5th, 6th, and combined 3rd–5th main stem leaf positions (numbered acropetally), respectively, based on genotypic means over three independent replications. Quantitative trait loci (QTL) analysis showed that loci were associated with distinct leaf developmental stages. QTL were identified on Chromosome 17 for the 2nd and 3rd leaf positions, and on Chromosome 4 for the 5th and 6th leaf positions. Additional loci were identified on Chromosomes 6, 18, 19, and 20. Interacting loci were identified on Chromosomes 5 and 15 for injury on trifoliate 4. The ozone sensitive parent contributed one favorable allele for ozone response. © 2016 Springer-Verlag Berlin Heidelberg (outside the USA) Source

Discover hidden collaborations