Time filter

Source Type

Saint Paul, MN, United States

Truman W.,Plant Genomics Institute | Sreekanta S.,Plant Genomics Institute | Sreekanta S.,University of Minnesota | Lu Y.,Plant Genomics Institute | And 6 more authors.
Plant Physiology

Two members of the eight-member CALMODULIN-BINDING PROTEIN60 (CBP60) gene family, CBP60g and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1 (SARD1), encode positive regulators of plant immunity that promote the production of salicylic acid (SA) and affect the expression of SA-dependent and SA-independent defense genes. Here, we investigated the other six family members in Arabidopsis (Arabidopsis thaliana). Only cbp60a mutations affected growth of the bacterial pathogen Pseudomonas syringae pv maculicola ES4326. In contrast to cbp60g and sard1 mutations, cbp60a mutations reduced pathogen growth, indicating that CBP60a is a negative regulator of immunity. Bacterial growth was increased by cbp60g only in the presence of CBP60a, while the increase in growth due to sard1 was independent of CBP60a, suggesting that the primary function of CBP60gmay be to counter the repressive effect of CBP60a. In the absence of pathogen, levels of SA as well as of several SA-dependent and SA-independent pathogen-inducible genes were higher in cbp60a plants than in the wild type, suggesting that the enhanced resistance of cbp60a plants may result from the activation of immune responses prior to pathogen attack. CBP60a bound calmodulin, and the calmodulin-binding domain was defined at the C-terminal end of the protein. Transgenes encoding mutant versions of CBP60a lacking the ability to bind calmodulin failed to complement null cbp60a mutations, indicating that calmodulin-binding ability is required for the immunity-repressing function of CBP60a. Regulation at the CBP60 node involves negative regulation by CBP60a as well as positive regulation by CBP60g and SARD1, providing multiple levels of control over the activation of immune responses. © 2013 American Society of Plant Biologists. All Rights Reserved. Source

Kim Y.-C.,Plant Genomics Institute | Jahren N.,Plant Genomics Institute | Stone M.D.,University of Minnesota | Udeshi N.D.,University of Virginia | And 5 more authors.
Plant Physiology

Many plant proteins are modified with N-linked oligosaccharides at asparagine-X-serine/threonine sites during transit through the endoplasmic reticulum and the Golgi. We have identified a number of Arabidopsis (Arabidopsis thaliana) proteins with modifications consisting of an N-linked N-acetyl-D-glucosamine monosaccharide (N-GlcNAc). Electron transfer dissociation mass spectrometry analysis of peptides bearing this modification mapped the modification to asparagine-X-serine/threonine sites on proteins that are predicted to transit through the endoplasmic reticulum and Golgi. A mass labeling method was developed and used to study N-GlcNAc modification of two thioglucoside glucohydrolases (myrosinases), TGG1 and TGG2 (for thioglucoside glucohydrolase). These myrosinases are also modified with high-mannose (Man)-type glycans. We found that N-GlcNAc and high-Man-type glycans can occur at the same site. It has been hypothesized that N-GlcNAc modifications are generated when endo-β-N-acetylglucosaminidase (ENGase) cleaves N-linked glycans. We examined the effects of mutations affecting the two known Arabidopsis ENGases on N-GlcNAc modification of myrosinase and found that modification of TGG2 was greatly reduced in one of the single mutants and absent in the double mutant. Surprisingly, N-GlcNAc modification of TGG1 was not affected in any of the mutants. These data support the hypothesis that ENGases hydrolyze high-Man glycans to produce some of the N-GlcNAc modifications but also suggest that some N-GlcNAc modifications are generated by another mechanism. Since N-GlcNAc modification was detected at only one site on each myrosinase, the production of the N-GlcNAc modification may be regulated. © 2012 American Society of Plant Biologists. All Rights Reserved. Source

Discover hidden collaborations