Plant Molecular Biology Laboratory

India

Plant Molecular Biology Laboratory

India

Time filter

Source Type

Azeez A.,Plant Molecular Biology Laboratory | Sane A.P.,CSIR - Central Electrochemical Research Institute
Plant Signaling and Behavior | Year: 2015

Plants have to cope with changing seasons and adverse environmental conditions. Being sessile, plants have developed elaborate mechanisms for their survival that allow them to sense and adapt to the environment and reproduce successfully. A major adaptive trait for the survival of trees of temperate and boreal forests is the induction of growth cessation in anticipation of winters. In the last few years enormous progress has been made to elucidate the molecular mechanisms underlying SDs induced growth cessation in model perennial tree hybrid aspen (Populus tremula × P. tremuloides). In this review we discuss the molecular mechanism underlying photoperiodic control of growth cessation and adaptive responses. © 2015 Taylor & Francis Group, LLC.


Chaurasia A.K.,Plant Molecular Biology Laboratory | Patil H.B.,Plant Molecular Biology Laboratory | Azeez A.,Plant Molecular Biology Laboratory | Subramaniam V.R.,Plant Molecular Biology Laboratory | And 3 more authors.
Physiology and Molecular Biology of Plants | Year: 2016

The CONSTANS (CO) family is an important regulator of flowering in photoperiod sensitive plants. But information regarding their role in day neutral plants is limited. We report identification of nine Group I type CONSTANS-like (COL) genes of banana and their characterization for their age dependent, diurnal and tissue-specific expression. Our studies show that the Group I genes are conserved in structure to members in other plants. Expression of these genes shows a distinct circadian regulation with a peak during light period. Developmental stage specific expression reveals high level transcript accumulation of two genes, MaCOL3a and MaCOL3b, well before flowering and until the initiation of flowering. A decrease in their transcript levels after initiation of flowering is followed by an increase in transcription of other members that coincides with the continued development of the inflorescence and fruiting. CO binding cis-elements are observed in at least three FT-like genes in banana suggesting possible CO-FT interactions that might regulate flowering. Distinct tissue specific expression patterns are observed for different family members in mature leaves, apical inflorescence, bracts, fruit skin and fruit pulp suggesting possible roles other than flowering. This is the first exhaustive study of the COL genes belonging to Group I of banana. © 2016 Prof. H.S. Srivastava Foundation for Science and Society


PubMed | Plant Molecular Biology Laboratory and CSIR - Central Electrochemical Research Institute
Type: Journal Article | Journal: Physiology and molecular biology of plants : an international journal of functional plant biology | Year: 2016

The CONSTANS (CO) family is an important regulator of flowering in photoperiod sensitive plants. But information regarding their role in day neutral plants is limited. We report identification of nine Group I type CONSTANS-like (COL) genes of banana and their characterization for their age dependent, diurnal and tissue-specific expression. Our studies show that the Group I genes are conserved in structure to members in other plants. Expression of these genes shows a distinct circadian regulation with a peak during light period. Developmental stage specific expression reveals high level transcript accumulation of two genes, MaCOL3a and MaCOL3b, well before flowering and until the initiation of flowering. A decrease in their transcript levels after initiation of flowering is followed by an increase in transcription of other members that coincides with the continued development of the inflorescence and fruiting. CO binding cis-elements are observed in at least three FT -like genes in banana suggesting possible CO-FT interactions that might regulate flowering. Distinct tissue specific expression patterns are observed for different family members in mature leaves, apical inflorescence, bracts, fruit skin and fruit pulp suggesting possible roles other than flowering. This is the first exhaustive study of the COL genes belonging to Group I of banana.

Loading Plant Molecular Biology Laboratory collaborators
Loading Plant Molecular Biology Laboratory collaborators