Wilmington, MA, United States
Wilmington, MA, United States
SEARCH FILTERS
Time filter
Source Type

This disclosure provides systems, methods, and apparatus for reducing ambient light reflection in a display device having a backplane incorporating low-temperature polycrystalline silicon (LTPS) transistors. Ambient reflection can be reduced by incorporating both conductive and non-conductive light-absorbing materials into the display backplane. A light-absorbing conductive material that can withstand the temperatures generated by laser annealing of LTPS transistor channels can be deposited and patterned such that its footprint substantially coincides with the footprints of the LTPS channels. After the LTPS channels are fabricated, a light-absorbing dielectric material can be deposited with a footprint extending at least below the footprints of other reflective components of the backplane to be positioned above the light-absorbing dielectric material. Together, the light-absorbing conductive material and the light-absorbing dielectric material can obstruct substantially all of the reflective surfaces within the backplane, thereby reducing reflection of ambient light by the backplane.


This disclosure provides systems, methods and apparatus for controlling the states of a light modulator used in displays. A display apparatus includes pixels circuit for controlling the state of operation of dual actuator light modulators. The pixel circuit can be implemented using three transistors and a capacitor. In particular, the pixel circuit can include a charge-discharge transistor, a data transistor, and a feedback transistor. The charge-discharge transistor is used to both selectively charge and selectively discharge an output node of the pixel circuit coupled to the light modulator. The data transistor enables loading a data capacitor with data voltage representative of image data. The feedback transistor provides positive feedback to allow the output node to be charged to the actuation voltage via the charge-discharge transistor.


Patent
Pixtronix | Date: 2015-09-24

This disclosure provides systems, methods, and apparatus for providing protective coatings on electromechanical systems (EMS) devices. A display apparatus can include an electrostatic actuation assembly for controlling the position of a suspended portion of a display element. The electrostatic actuation assembly can include a load beam, drive beam, and a coating disposed over a portion of the drive beam. The coating can include a plurality of raised tabs spaced apart from each other. One or both of the size of the raised tabs and a pitch between raised tabs can be varied along a surface of the drive beam. The voltage used to actuate the actuator is, in part, related to the shape and relative position of the load and drive beams. The raised tabs can be sized, spaced, or positioned to affect a desired rest position and rest shape of the drive beam relative to the load beam.


This disclosure provides systems, methods, and apparatus for facilitating repair of inoperable MEMS display elements. A display apparatus can include a plurality of display elements over a substrate. Each display element can have a pixel output interconnect. The display apparatus also can include a plurality of conductive bridges each associated with the pixel output interconnects of a respective pair of adjacent display elements. A first conductive bridge can include an electrical connection between the pixel output interconnects of a first pair of adjacent display elements. A second conductive bridge associated with a second pair of adjacent display elements can be electrically isolated from the pixel output interconnects of at least one display element of the second pair of display elements. A laser or other means can be used to form an electrical connection between the first conductive bridge and the respective pair of adjacent display elements.


This disclosure provides systems, methods, and apparatus for improving angular distribution of light and total light throughput in a display device. A display device can include first and second substrates and an array of display elements positioned between the first and second substrates. A first light blocking layer can be positioned on the first substrate and can define a first plurality of apertures. A second light blocking layer can be positioned on the second substrate and can define a first second of apertures. A plurality of reflective sidewalls can be positioned adjacent to at least one edge of a respective aperture of the first plurality of apertures. The reflective sidewalls can help to improve angular distribution of light and total light throughput of the display device.


This disclosure provides systems, methods, and apparatus for supporting a bezel region of a display device. A display device can include a first substrate and a second substrate coupled by an edge seal. An array of shutter-based display elements can be positioned within an image forming region between the first and second substrates. A plurality of mechanical supports can be positioned within a bezel region outside of the image-rendering region and within the edge seal. Along a side of the bezel region that extends in a direction perpendicular to a direction of shutter motion, adjacent mechanical supports can be separated from one another by a gap that is longer than each of the mechanical supports in the direction perpendicular to the direction of shutter motion.


This disclosure provides systems, methods, and apparatus for mirror displays. In one aspect, a mirror display can include a front transparent substrate, a rear transparent substrate, and a plurality of display elements between the front transparent substrate and the rear transparent substrate. A first light-blocking layer can be on a rear surface of the front transparent substrate. The first light blocking layer can have a reflectance of at least about 50%. A plurality of apertures can be formed through the first light-blocking layer. Each aperture can correspond to a respective one of the plurality of display elements. The total area of the apertures can account for less than about 50% of the area of the image-rendering region.


Patent
Pixtronix | Date: 2015-11-05

A display includes pixels and a controller. The controller can cause the pixels to generate colors corresponding to an image frame. The controller can cause the display to display the image frame using sets of subframe images corresponding to contributing colors according to a field sequential color (FSC) image formation process. The contributing colors include component colors and at least one composite color, which is substantially a combination of at least two component colors. A greater number of subframe images corresponding to a first component color can be displayed relative to a number of subframe images corresponding to another component color. The display can be configured to output a given luminance of a contributing color for a first pixel by generating a first set of pixel states and output the same luminance of the contributing color for a second pixel by generating a second, different set of pixel states.


Systems and methods for a display having an array of pixels, a substrate, and a control matrix formed on the substrate are described. The array of pixels includes mechanical light modulators that can be referred to as micro-electro-mechanical or MEMS light modulators. The MEMS light modulators may be shutter-based light modulators, and an array of apertures may be formed on the substrate corresponding spatially to the shutters in the array of shutter-based light modulators. Each modulator is configured to be driven from a-light-blocking state to a-light-transmissive state through a movement direction. The array of light modulators are arranged to reduce the correlations in movement directions of neighboring pixels, thereby reducing the amplitude of acoustic emissions from the display.


A direct-view display includes an array of MEMS light modulators and a control matrix formed on a transparent substrate, where each light modulator can be driven into at least two states, and a controller for controlling the states of each light modulator in the array. The control matrix transmits data and actuation voltages to the array. The controller includes an input, a processor, a memory, and an output. The input receives image data encoding an image frame for display. The processor derives a plurality of sub-frame data sets from the image data, where each sub-frame data set indicates desired states of light modulators in multiple rows and multiple columns of the array. The memory stores the plurality of sub-frame data sets. The output outputs the plurality of sub-frame data sets according to an output sequence to drive light modulators into the states indicated in the sub-frame data sets.

Loading Pixtronix collaborators
Loading Pixtronix collaborators