Entity

Time filter

Source Type

Scottsdale, AZ, United States

Rosen L.S.,University of California at Los Angeles | Hurwitz H.I.,Duke University | Wong M.K.,Roswell Park Cancer Institute | Wong M.K.,University of Southern California | And 10 more authors.
Clinical Cancer Research | Year: 2012

Purpose: TRC105 is a chimeric IgG1 monoclonal antibody that binds CD105 (endoglin). This first-in-human, phase I, open-label study assessed safety, pharmacokinetics, and antitumor activity of TRC105 in patients with advanced refractory solid tumors. Patients and Methods: Patients received escalating doses of intravenous TRC105 until disease progression or unacceptable toxicity using a standard 3 + 3 phase I design. Results: Fifty patients were treated with escalating doses of TRC105. The maximum tolerated dose (MTD) was exceeded at 15 mg/kg every week because of dose-limiting hypoproliferative anemia. TRC105 exposure increased with increasing dose, and continuous serum concentrations that saturate CD105 receptors were maintained at 10 mg/kg weekly (the MTD) and 15 mg/kg every 2 weeks. Common adverse events including anemia, telangiectasias, and infusion reactions reflected the mechanism of action of the drug. Antibodies to TRC105 were not detected in patients treated with TRC105 from Chinese hamster ovary cells being used in ongoing phase Ib and phase II studies. Stable disease or better was achieved in 21 of 45 evaluable patients (47%), including two ongoing responses at 48 and 18 months. Conclusion: TRC105 was tolerated at 10 mg/kg every week and 15 mg/kg every 2 weeks, with a safety profile that was distinct from that of VEGF inhibitors. Evidence of clinical activity was seen in a refractory patient population. Ongoing clinical trials are testing TRC105 in combination with chemotherapy and VEGF inhibitors and as a single agent in prostate, ovarian, bladder, breast, and hepatocellular cancer. ©2012 AACR.


Lin N.U.,Dana-Farber Cancer Institute | Winer E.P.,Dana-Farber Cancer Institute | Wheatley D.,Royal Cornwall Hospital | Carey L.A.,University of North Carolina at Chapel Hill | And 12 more authors.
Breast Cancer Research and Treatment | Year: 2012

Afatinib is an oral, ErbB family blocker, which covalently binds and irreversibly blocks all kinase-compe-tent ErbB family members. This phase II, open-label, singlearm study explored afatinib activity in human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients progressing after trastuzumab treatment. Patients had stage IIIB/IV HER2-positive metastatic breast cancer, with progression following trastuzumab or trastuzumab intolerance and an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2. Patients received 50 mg afatinib once-daily until disease progression. Primary endpoint was objective response rate (Response Evaluation Criteria in Solid Tumors 1.0), with tumor assessments every 8 weeks. Forty-one patients were treated. Patients had received a median of three prior chemotherapy lines (range, 0-15) and 68.3% had received trastuzumab for >1 year.Four patients (10% of 41 treated; 11% of evaluable patients) had partial response. Fifteen patients (37% of 41) had stable disease as best response and 19 (46% of 41) achieved clinical benefit. Median progression-free survival was 15.1 weeks (95% confidence interval [CI]: 8.1-16.7); median overall survival was 61.0 weeks (95% CI: 56.7-not evaluable). Most frequent common terminology criteria for adverse events grade 3 treatment-related adverse events were diarrhea (24.4%) and rash (9.8%). Afatinib monotherapy was associated with promising clinical activity in extensively pretreated HER2-positive breast cancer patients who had progressed following trastuzumab treatment. © 2012 Springer Science+Business Media, LLC.


Herbst R.S.,Yale University | Soria J.-C.,Gustave Roussy South Paris University | Kowanetz M.,Genentech | Fine G.D.,Genentech | And 18 more authors.
Nature | Year: 2014

The development of human cancer is a multistep process characterized by the accumulation of genetic and epigenetic alterations that drive or reflect tumour progression. These changes distinguish cancer cells from their normal counterparts, allowing tumours to be recognized as foreign by the immune system1-4. However, tumours are rarely rejected spontaneously, reflecting their ability to maintain an immunosuppressive microenvironment5. Programmed death-ligand 1 (PD-L1; also called B7-H1 or CD274), which is expressed on many cancer and immune cells, plays an important part in blocking the 'cancer immunity cycle' by binding programmed death-1 (PD-1) and B7.1 (CD80), both of which are negative regulators of T-lymphocyte activation. Binding of PD-L1 to its receptors suppresses T-cell migration, proliferation and secretion of cytotoxic mediators, and restricts tumour cell killing6-10. The PD-L1-PD-1 axis protects the host from overactive T-effector cells not only in cancer but also during microbial infections11. Blocking PD-L1 should therefore enhance anticancer immunity, but little is known about predictive factors of efficacy. This study was designed to evaluate the safety, activity and biomarkers of PD-L1 inhibition using the engineered humanized antibody MPDL3280A. Here we show that across multiple cancer types, responses (as evaluated by Response Evaluation Criteria in Solid Tumours, version 1.1) were observed in patients with tumours expressing high levels of PD-L1, especially when PD-L1 was expressed by tumour-infiltrating immune cells. Furthermore, responses were associated with T-helper type 1 (TH 1) gene expression, CTLA4 expression and the absence of fractalkine (CX3CL1) in baseline tumour specimens. Together, these data suggest that MPDL3280A is most effective in patients in which pre-existing immunity is suppressed by PD-L1, and is re-invigorated on antibody treatment. © 2014 Macmillan Publishers Limited. All rights reserved.


Rosen L.S.,University of California at Los Angeles | Gordon M.S.,Pinnacle Oncology Hematology | Robert F.,University of Alabama at Birmingham | Matei D.E.,Indiana University
Current Oncology Reports | Year: 2014

Endoglin is a homodimeric cell membrane glycoprotein receptor for transforming growth factor β and bone morphogenetic proteins. Endoglin is essential for angiogenesis, being densely expressed on proliferating endothelial cells and upregulated during hypoxia. Its expression is implicated in development of resistance to vascular endothelial growth factor (VEGF) inhibition. TRC105 is an antibody that binds endoglin and prevents endothelial cell activation. Targeting endoglin and the VEGF pathway concurrently improves treatment in vitro and appears to reverse resistance to bevacizumab in some refractory cancer patients. Randomized trials are under way to assess the clinical benefit of adding TRC105 therapy to bevacizumab therapy. Further trials are under way to assess the activity of TRC105 with small-molecule inhibitors of the VEGF pathway in renal cell carcinoma, hepatocellular carcinoma, and soft tissue sarcoma. Stratification of soft tissue sarcomas based on endoglin expression levels is proposed to identify patients most likely to benefit from TRC105 treatment. The development of a TRC105 antibody-drug conjugate is also described. © 2014 Springer Science+Business Media New York.


Falchook G.S.,University of Houston | Lewis K.D.,Aurora University | Infante J.R.,Sarah Cannon Research Institute Tennessee Oncology PLLC | Gordon M.S.,Pinnacle Oncology Hematology | And 19 more authors.
The Lancet Oncology | Year: 2012

Background: MEK is a member of the MAPK signalling cascade that is commonly activated in melanoma. Direct inhibition of MEK blocks cell proliferation and induces apoptosis. We aimed to analyse safety, efficacy, and genotyping data for the oral, small-molecule MEK inhibitor trametinib in patients with melanoma. Methods: We undertook a multicentre, phase 1 three-part study (dose escalation, cohort expansion, and pharmacodynamic assessment). The main results of this study are reported elsewhere; here we present data relating to patients with melanoma. We obtained tumour samples to assess BRAF mutational status, and available tissues underwent exploratory genotyping analysis. Disease response was measured by Response Evaluation Criteria in Solid Tumors, and adverse events were defined by common toxicity criteria. This study is registered with ClinicalTrials.gov, number NCT00687622. Findings: 97 patients with melanoma were enrolled, including 81 with cutaneous or unknown primary melanoma (36 BRAF mutant, 39 BRAF wild-type, six BRAF status unknown), and 16 with uveal melanoma. The most common treatment-related adverse events were rash or dermatitis acneiform (n=80; 82%) and diarrhoea (44; 45%), most of which were grade 2 or lower. No cutaneous squamous-cell carcinomas were recorded. Of 36 patients with BRAF mutations, 30 had not received a BRAF inhibitor before; two complete responses (both confirmed) and ten partial responses (eight confirmed) were noted in this subgroup (confirmed response rate, 33%). Median progression-free survival of this subgroup was 5·7 months (95% CI 4·0-7·4). Of the six patients who had received previous BRAF inhibition, one unconfirmed partial response was recorded. Of 39 patients with BRAF wild-type melanoma, four partial responses were confirmed (confirmed response rate, 10%). Interpretation: Our data show substantial clinical activity of trametinib in melanoma and suggest that MEK is a valid therapeutic target. Differences in response rates according to mutations indicate the importance of mutational analyses in the future. Funding: GlaxoSmithKline. © 2012 Elsevier Ltd.

Discover hidden collaborations