Time filter

Source Type

Kecskemét, Hungary

Vajna B.,Eotvos Lorand University | Nagy A.,Pilze Nagy Ltd. | Sajben E.,University of Szeged | Manczinger L.,University of Szeged | And 4 more authors.
Applied Microbiology and Biotechnology

Although oyster mushroom (Pleurotus spp.) is a valuable food, cultivated worldwide on an industrial scale, still very little is known about the microbial dynamics during oyster mushroom substrate preparation. Therefore, the characterization of the microbial dynamics by chemical and biological tools was the objective of this study. During substrate preparation, enzymatic digestibility of the substrate improved by 77%, whereas the cellulose and hemicellulose to lignin ratios decreased by 9% and 19%, respectively. Fluorescein diacetate hydrolysis reached its minimum value at the temperature maximum of the process during the composting phase and exceeded the initial level at the end of the process. Fungal species played part in the initial mesophilic phase of the substrate preparation process, but they disappeared after pasteurization in tunnels at constant elevated temperatures. Changes in the microbiota showed a marked bacterial community succession during substrate preparation investigated by 16S ribosomal deoxyribonucleic acid-based terminal restriction fragment length polymorphism (T-RFLP). Mature samples represented the least variance, which indicated the effect of the standardized preparation protocol. The relation between mushroom yield and the bacterial community T-RFLP fingerprints was investigated, but the uniformity of mushroom yields did not support any significant correlation. © 2009 Springer-Verlag. Source

Vajna B.,Eotvos Lorand University | Szili D.,Eotvos Lorand University | Nagy A.,Pilze Nagy Ltd. | Marialigeti K.,Eotvos Lorand University
Microbial Ecology

While oyster mushroom (Pleurotus spp.) is one of the most popular cultivated edible mushrooms, there is scanty information about the microbial community taking part in mushroom substrate production. In this study, an improved sequence-aided terminal restriction fragment length polymorphism (T-RFLP) was used to identify and (semi-)quantify the dominant bacteria of oyster mushroom substrate preparation. The main features of the improved T-RFLP data analysis were the alignment of chromatograms with variable clustering thresholds, the visualization of data matrix with principal component analysis ordination superimposed with cluster analysis, and the search for stage-specific peaks (bacterial taxa) with similarity percentage (analysis of similarity) analysis, followed by identification with clone libraries. By applying this method, the dominance of the following bacterial genera was revealed during oyster mushroom substrate preparation: Pseudomonas and Sphingomonas at startup, Bacillus, Geobacillus, Ureibacillus, Pseudoxanthomonas, and Thermobispora at the end of partial composting, and finally several genera of Actinobacteria, Thermus, Bacillus, Geobacillus, Thermobacillus, and Ureibacillus in the mature substrate. As the proportion of uncultured bacteria increased during the process, it is worth establishing strain collections from partial composting and from mature substrate for searching new species. © 2012 Springer Science+Business Media, LLC. Source

Banfi R.,Eotvos Lorand University | Pohner Z.,Eotvos Lorand University | Kovacs J.,Eotvos Lorand University | Luzics S.,Eotvos Lorand University | And 5 more authors.
Fungal Biology

Oyster mushroom (Pleurotus ostreatus) lignocellulolytic enzyme activity pattern and variation was investigated in a large-scale facility from spawning until the end of the second flush. In the first cultivation cycle laccase production reached its peak during vegetative growth stage, while manganese-peroxidase showed the highest activity during fruiting body induction. Cellulose and hemicellulose degrading enzymes had maximal activity at the beginning of flush and harvest stage. The enzyme activities showed similar tendencies among five different mushroom substrate blocks representing a production house. The spatial variability analysis of enzyme activities pointed out the within substrate block heterogeneity as the main source if variation. This result was confirmed by Combined Cluster and Discriminant Analysis (CCDA) method showing minimal among block heterogeneity considering the whole investigation period; furthermore in the first cultivation cycle all blocks were grouped into one cluster. © 2015 The British Mycological Society. Source

Discover hidden collaborations