Pilze Nagy Ltd.

Kecskemét, Hungary

Pilze Nagy Ltd.

Kecskemét, Hungary
SEARCH FILTERS
Time filter
Source Type

Sajben E.,University of Szeged | Manczinger L.,University of Szeged | Nagy A.,Pilze Nagy Ltd. | Kredics L.,University of Szeged | Vagvolgyi C.,University of Szeged
Microbiological Research | Year: 2011

Pleurotus ostreatus is one of the most extensively cultivated mushrooms in the world; however, the success of cultivation often depends on the proliferation of different bacterial pathogens. Pseudomonas tolaasii is thought as the major cause of brown blotch disease of Agaricus bisporus and yellowing of Pleurotus ostreatus. In this study we examined the pathogenicity and assessed the industrial damage causing effect of 41 Pseudomonas strains isolated from deformed, yellowing oyster mushroom (P. ostreatus) sporocarps. Identification of the isolates at species level by the partial sequence analysis of the hypervariable region of the rpoB gene revealed nine Pseudomonas sps. We analyzed the presence of the tolaasin gene-cluster, the production of fluorescent pigments, the oxidase- and nitrite reductase activities, the growth at restrictive temperatures and the carbon source utilizing abilities of each strain. Complex lipopeptide production (including tolaasin) was examined with thin layer chromatography and a novel in vitro necrosis-test was developed and evaluated for the investigation of the pathogenic effect of Pseudomonas strains. Our results underline the importance of extracellular enzyme production in the sporocarp decaying process. Strong correlations were found between the secretion of trypsin-like proteases and lipases and the necrotic effect of these bacteria. All the results clearly established that besides Ps. tolaasii, Ps. fluorescens biovar V strains were pathogenic to P. ostreatus and cause serious losses during mushroom production. Our results underline the importance of extracellular enzyme production in the sporocarp decaying process, especially the trypsin-like proteases and lipases. © 2010 Elsevier GmbH.


Vajna B.,Eötvös Loránd University | Nagy A.,Pilze Nagy Ltd. | Sajben E.,University of Szeged | Manczinger L.,University of Szeged | And 4 more authors.
Applied Microbiology and Biotechnology | Year: 2010

Although oyster mushroom (Pleurotus spp.) is a valuable food, cultivated worldwide on an industrial scale, still very little is known about the microbial dynamics during oyster mushroom substrate preparation. Therefore, the characterization of the microbial dynamics by chemical and biological tools was the objective of this study. During substrate preparation, enzymatic digestibility of the substrate improved by 77%, whereas the cellulose and hemicellulose to lignin ratios decreased by 9% and 19%, respectively. Fluorescein diacetate hydrolysis reached its minimum value at the temperature maximum of the process during the composting phase and exceeded the initial level at the end of the process. Fungal species played part in the initial mesophilic phase of the substrate preparation process, but they disappeared after pasteurization in tunnels at constant elevated temperatures. Changes in the microbiota showed a marked bacterial community succession during substrate preparation investigated by 16S ribosomal deoxyribonucleic acid-based terminal restriction fragment length polymorphism (T-RFLP). Mature samples represented the least variance, which indicated the effect of the standardized preparation protocol. The relation between mushroom yield and the bacterial community T-RFLP fingerprints was investigated, but the uniformity of mushroom yields did not support any significant correlation. © 2009 Springer-Verlag.


Banfi R.,Eötvös Loránd University | Pohner Z.,Eötvös Loránd University | Kovacs J.,Eötvös Loránd University | Luzics S.,Eötvös Loránd University | And 5 more authors.
Fungal Biology | Year: 2015

Oyster mushroom (Pleurotus ostreatus) lignocellulolytic enzyme activity pattern and variation was investigated in a large-scale facility from spawning until the end of the second flush. In the first cultivation cycle laccase production reached its peak during vegetative growth stage, while manganese-peroxidase showed the highest activity during fruiting body induction. Cellulose and hemicellulose degrading enzymes had maximal activity at the beginning of flush and harvest stage. The enzyme activities showed similar tendencies among five different mushroom substrate blocks representing a production house. The spatial variability analysis of enzyme activities pointed out the within substrate block heterogeneity as the main source if variation. This result was confirmed by Combined Cluster and Discriminant Analysis (CCDA) method showing minimal among block heterogeneity considering the whole investigation period; furthermore in the first cultivation cycle all blocks were grouped into one cluster. © 2015 The British Mycological Society.


Vajna B.,Eötvös Loránd University | Szili D.,Eötvös Loránd University | Nagy A.,Pilze Nagy Ltd. | Marialigeti K.,Eötvös Loránd University
Microbial Ecology | Year: 2012

While oyster mushroom (Pleurotus spp.) is one of the most popular cultivated edible mushrooms, there is scanty information about the microbial community taking part in mushroom substrate production. In this study, an improved sequence-aided terminal restriction fragment length polymorphism (T-RFLP) was used to identify and (semi-)quantify the dominant bacteria of oyster mushroom substrate preparation. The main features of the improved T-RFLP data analysis were the alignment of chromatograms with variable clustering thresholds, the visualization of data matrix with principal component analysis ordination superimposed with cluster analysis, and the search for stage-specific peaks (bacterial taxa) with similarity percentage (analysis of similarity) analysis, followed by identification with clone libraries. By applying this method, the dominance of the following bacterial genera was revealed during oyster mushroom substrate preparation: Pseudomonas and Sphingomonas at startup, Bacillus, Geobacillus, Ureibacillus, Pseudoxanthomonas, and Thermobispora at the end of partial composting, and finally several genera of Actinobacteria, Thermus, Bacillus, Geobacillus, Thermobacillus, and Ureibacillus in the mature substrate. As the proportion of uncultured bacteria increased during the process, it is worth establishing strain collections from partial composting and from mature substrate for searching new species. © 2012 Springer Science+Business Media, LLC.


Oyster mushroom (Pleurotus ostreatus) lignocellulolytic enzyme activity pattern and variation was investigated in a large-scale facility from spawning until the end of the second flush. In the first cultivation cycle laccase production reached its peak during vegetative growth stage, while manganese-peroxidase showed the highest activity during fruiting body induction. Cellulose and hemicellulose degrading enzymes had maximal activity at the beginning of flush and harvest stage. The enzyme activities showed similar tendencies among five different mushroom substrate blocks representing a production house. The spatial variability analysis of enzyme activities pointed out the within substrate block heterogeneity as the main source if variation. This result was confirmed by Combined Cluster and Discriminant Analysis (CCDA) method showing minimal among block heterogeneity considering the whole investigation period; furthermore in the first cultivation cycle all blocks were grouped into one cluster.

Loading Pilze Nagy Ltd. collaborators
Loading Pilze Nagy Ltd. collaborators