Entity

Time filter

Source Type

Berlin, Germany

Schwarzer R.,Humboldt University of Berlin | Levental I.,University of Houston | Gramatica A.,Humboldt University of Berlin | Scolari S.,Humboldt University of Berlin | And 3 more authors.
Cellular Microbiology | Year: 2014

Enveloped viruses often use membrane lipid rafts to assemble and bud, augment infection and spread efficiently. However, the molecular bases and functional consequences of the partitioning of viral glycoproteins into microdomains remain intriguing questions in virus biology. Here, we measured Foerster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIMFRET) to study the role of distinct membrane proximal regions of the human immunodeficiency virus glycoprotein gp41 for lipid raft partitioning in living Chinese hamster ovary cells (CHO-K1). Gp41 was labelled with a fluorescent protein at the exoplasmic face of the membrane, preventing any interference of the fluorophore with the proposed role of the transmembrane and cytoplasmic domains in lateral organization of gp41. Raft localization was deduced from interaction with an established raft marker, a fluorescently tagged glycophosphatidylinositol anchor and the cholesterol recognition amino acid consensus (CRAC) was identified as the crucial lateral sorting determinant in CHO-K1 cells. Interestingly, the raft association of gp41 indicates a substantial cellto-cell heterogeneity of the plasma membrane microdomains. In complementary fluorescence polarization microscopy, a distinct CRAC requirement was found for the oligomerization of the gp41 variants. Our data provide further insight into the molecular basis and biological implications of the cholesterol dependent lateral sorting of viral glycoproteins for virus assembly at cellular membranes. © 2014 John Wiley & Sons Ltd.


Brenlla A.,University of Santiago de Compostela | Brenlla A.,Wayne State University | Veiga M.,University of Santiago de Compostela | Veiga M.,PicoQuant GmbH | And 4 more authors.
Journal of Physical Chemistry B | Year: 2013

This paper deals with the interplay between solvent properties and isomerism of 2-(2′-hydroxyphenyl)imidazo[4,5-b]pyridine (1), and the proton and charge-transfer processes that the different isomers undergo in the first-excited singlet state. We demonstrate the strong influence of these processes on the fluorescence properties of 1. We studied the behavior of 1 in several neutral and acidified solvents, by UV-vis absorption spectroscopy and by steady-state and time-resolved fluorescence spectroscopy. The fluorescence of 1 showed a strong sensitivity to the environment. This behavior is the result of conformational and isomeric equilibria and the completely different excited-state behavior of the isomers. For both neutral and cationic 1, isomers with intramolecular hydrogen bond between the hydroxyl group and the benzimidazole N undergo an ultrafast excited-state intramolecular proton transfer (ESIPT), yielding tautomeric species with very large Stokes shift. For both neutral and cationic 1, isomers with the OH group hydrogen-bonded to the solvent behave as strong photoacids, dissociating in the excited state in solvents with basic character. The pyridine nitrogen exhibits photobase character, protonating in the excited state even in some neutral solvents. An efficient radiationless deactivation channel of several species was detected, which we attributed to a twisted intramolecular charge-transfer (TICT) process, facilitated by deprotonation of the hydroxyl group and protonation of the pyridine nitrogen. © 2012 American Chemical Society.


Brenlla A.,University of Santiago de Compostela | Brenlla A.,Wayne State University | Veiga Gutierrez M.,University of Santiago de Compostela | Veiga Gutierrez M.,PicoQuant GmbH | And 4 more authors.
Journal of Physical Chemistry Letters | Year: 2014

Proton transfer from strong photoacids to hydroxylic solvents is much under debate. Experimentally, the main issue stems from relaxation and diffusion processes that are concomitant with ultrafast proton transfer and blur population dynamics. To overcome this, we propose a fast photodissociation reaction that, however, proceeds slower than solvent relaxation. Fluorescence spectroscopy of the cationic photoacid 2-(1′-hydroxy-2′-naphtyl) benzimidazolium reveals a two-stage mechanism: (a) reversible elementary proton transfer inside the solvent shell and (b) irreversible contact-pair splitting. The time evolution of the fluorescence signal is complex, yet this is explained quantitatively by simultaneous, spectrally overlapping emission of the acid, the conjugate base, and the contact proton-transfer pair. The latter attains high transient concentration in linear alcohols. Microscopic rate constants of dissociation are determined. © 2014 American Chemical Society.


Linck L.,BAM Federal Institute of Materials Research and Testing | Linck L.,Free University of Berlin | Kapusta P.,PicoQuant GmbH | Resch-Genger U.,BAM Federal Institute of Materials Research and Testing
Photochemistry and Photobiology | Year: 2012

Efficient signal generation in DNA-based assays requires understanding of the influence of fluorophore's interactions on the spectroscopic properties. The resulting changes in fluorescence intensity, quantum yield, emission anisotropy, and fluorescence lifetime provide straightforward tools for the study of molecular dynamics and interaction between labels and nucleic acids. Searching for bright fluorescent reporters for rolling circle amplification (RCA) as efficient signal enhancement strategy for biological formats, we investigated the spectroscopic properties of seven dyes: cyanines, rhodamines, and BODIPYs. They spectrally resemble Cy3, the most frequently used fluorophore in biodetection formats, and are measured in six samples (free dye, dye-dUTP, internally labeled ssDNA and dsDNA-single- and triple-labeled) using steady-state and time-resolved fluorometry. Special emphasis was dedicated to characterizing the nature of the interaction of these fluorophores differing in dye class, charge, and rigidity. Our results suggest dye charge and structure as main factors governing the dye's interactions, with DY-555 and Cy3B presenting the best candidates for our envisaged signal amplification strategy. This label comparison underlines the importance of a proper understanding of structure-property relations and dye-biomolecule interactions for reporter choice and presents a road map towards the design and interpretation of experiments using these labels on DNA of known sequence. © 2012 Wiley Periodicals, Inc.


Klauss A.,University of Potsdam | Konig M.,PicoQuant GmbH | Hille C.,University of Potsdam
PLoS ONE | Year: 2015

By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-toalign STED microscope in the single-beam path layout, previously proposed as "easy- STED", achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating. Copyright: © 2015 Klauss et al.

Discover hidden collaborations