Time filter

Source Type

Seoul, South Korea

Sanderson M.J.,University of Arizona | Copetti D.,University of Arizona | Copetti D.,International Rice Research Institute | Burquez A.,National Autonomous University of Mexico | And 13 more authors.
American Journal of Botany

PREMISE OF THE STUDY: Land-plant plastid genomes have only rarely undergone signifi cant changes in gene content and order. Thus, discovery of additional examples adds power to tests for causes of such genome-scale structural changes. METHODS: Using next-generation sequence data, we assembled the plastid genome of saguaro cactus and probed the nuclear genome for transferred plastid genes and functionally related nuclear genes. We combined these results with available data across Cactaceae and seed plants more broadly to infer the history of gene loss and to assess the strength of phylogenetic association between gene loss and loss of the inverted repeat (IR). KEY RESULTS: The saguaro plastid genome is the smallest known for an obligately photosynthetic angiosperm (~113 kb), having lost the IR and plastid ndh genes. This loss supports a statistically strong association across seed plants between the loss of ndh genes and the loss of the IR. Many nonplastid copies of plastid ndh genes were found in the nuclear genome, but none had intact reading frames; nor did three related nuclear-encoded subunits. However, nuclear pgr5, which functions in a partially redundant pathway, was intact. CONCLUSIONS: The existence of an alternative pathway redundant with the function of the plastid NADH dehydrogenase-like complex (NDH) complex may permit loss of the plastid ndh gene suite in photoautotrophs like saguaro. Loss of these genes may be a recurring mechanism for overall plastid genome size reduction, especially in combination with loss of the IR. © 2015 Botanical Society of America. Source

Kim B.,Chonnam National University | Kim K.,Seoul National University | Kim K.,Phyzen Genomics Institute | Yang T.-J.,Seoul National University | Kim S.,Chonnam National University
Current Genetics

Cytoplasmic male-sterility (CMS) conferred by the CMS-S cytoplasm has been most commonly used for onion (Allium cepa L.) F1 hybrid seed production. We first report the complete mitochondrial genome sequence containing CMS-S cytoplasm in this study. Initially, seven contigs were de novo assembled from 150-bp paired-end raw reads produced from the total genomic DNA using the Illumina NextSeq500 platform. These contigs were connected into a single circular genome consisting of 316,363 bp (GenBank accession: KU318712) by PCR amplification. Although all 24 core protein-coding genes were present, no ribosomal protein-coding genes, except rps12, were identified in the onion mitochondrial genome. Unusual trans-splicing of the cox2 gene was verified, and the cox1 gene was identified as part of the chimeric orf725 gene, which is a candidate gene responsible for inducing CMS. In addition to orf725, two small chimeric genes were identified, but no transcripts were detected for these two open reading frames. Thirteen chloroplast-derived sequences, with sizes of 126–13,986 bp, were identified in the intergenic regions. Almost 10 % of the onion mitochondrial genome was composed of repeat sequences. The vast majority of repeats were short repeats of <100 base pairs. Interestingly, the gene encoding ccmFN was split into two genes. The ccmFN gene split is first identified outside the Brassicaceae family. The breakpoint in the onion ccmFN gene was different from that of other Brassicaceae species. This split of the ccmFN gene was also present in 30 other Allium species. The complete onion mitochondrial genome sequence reported in this study would be fundamental information for elucidation of onion CMS evolution. © 2016 Springer-Verlag Berlin Heidelberg Source

Kim N.-R.,Hallym University | Kim K.,Seoul National University | Lee S.-C.,Seoul National University | Lee J.-H.,Hallym University | And 4 more authors.
Mitochondrial DNA

Wisteria floribunda and Wisteria sinensis are ornamental woody vines in the Fabaceae. The complete chloroplast genome sequences of the two species were generated by de novo assembly using whole genome next generation sequences. The chloroplast genomes of W. floribunda and W. sinensis were 130 960 bp and 130 561 bp long, respectively, and showed inverted repeat (IR)-lacking structures as those reported in IRLC in the Fabaceae. The chloroplast genomes of both species contained same number of protein-coding sequences (77), tRNA genes (30), and rRNA genes (4). The phylogenetic analysis with the reported chloroplast genomes confirmed close taxonomical relationship of W. floribunda and W. sinensis. © 2015 Taylor & Francis Source

Nguyen B.,Seoul National University | Kim K.,Seoul National University | Kim Y.-C.,National Institute of Development Administration | Lee S.-C.,Seoul National University | And 6 more authors.
Mitochondrial DNA

The complete chloroplast genome sequence of Panax vietnamensis, a medicinal herb belonging to Araliaceae family, was generated by de novo assembly using whole genome next-generation sequences. The chloroplast genome was a circular form of 155 992 bp long and showed typical chloroplast genome structure consisting of a large single-copy region of 86 177 bp, a small single copy region of 17 935 bp and a pair of inverted repeats of 25 940 bp. The chloroplast genome had 79 protein-coding genes, 29 tRNA genes and 4 rRNA genes. The phylogenetic analysis with the reported chloroplast genomes revealed that four Panax species were grouped in the same clade and P. vietnamensis is more closely related to P. notoginseng than P. ginseng and P. quinquefolius. © 2015 Taylor & Francis. Source

Kim K.,Seoul National University | Kim K.,Phyzen Genomics Institute | Lee S.-C.,Seoul National University | Lee J.,Seoul National University | And 5 more authors.

We report complete sequences of chloroplast (cp) genome and 45S nuclear ribosomal DNA (45S nrDNA) for 11 Panax ginseng cultivars. We have obtained complete sequences of cp and 45S nrDNA, the representative barcoding target sequences for cytoplasm and nuclear genome, respectively, based on low coverage NGS sequence of each cultivar. The cp genomes sizes ranged from 156,241 to 156,425 bp and the major size variation was derived from differences in copy number of tandem repeats in the ycf1 gene and in the intergenic regions of rps16-trnUUG and rpl32-trnUAG. The complete 45S nrDNA unit sequences were 11,091 bp, representing a consensus single transcriptional unit with an intergenic spacer region. Comparative analysis of these sequences as well as those previously reported for three Chinese accessions identified very rare but unique polymorphism in the cp genome within P. ginseng cultivars. There were 12 intra-species polymorphisms (six SNPs and six InDels) among 14 cultivars. We also identified five SNPs from 45S nrDNA of 11 Korean ginseng cultivars. From the 17 unique informative polymorphic sites, we developed six reliable markers for analysis of ginseng diversity and cultivar authentication. © 2015 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Discover hidden collaborations