Entity

Time filter

Source Type


Wang J.,University of California at Los Angeles | Lin L.,University of California at Los Angeles | Atanur S.S.,Physiological Genomics and Medicine Group | Aitman T.J.,Physiological Genomics and Medicine Group | And 2 more authors.
Circulation: Cardiovascular Genetics | Year: 2015

Background-The metabolic syndrome (MetS) is a collection of co-occurring complex disorders including obesity, hypertension, dyslipidemia, and insulin resistance. The Lyon hypertensive and Lyon normotensive rats are models of MetS sensitivity and resistance, respectively. To identify genetic determinants and mechanisms underlying MetS, an F2 intercross between Lyon hypertensive and Lyon normotensive was comprehensively studied. Methods and Results-Multidimensional data were obtained including genotypes of 1536 single-nucleotide polymorphisms, 23 physiological traits, and >150 billion nucleotides of RNA-seq reads from the livers of F2 intercross offspring and parental rats. Phenotypic and expression quantitative trait loci (eQTL) were mapped. Application of systems biology methods identified 17 candidate MetS genes. Several putative causal cis-eQTL were identified corresponding with phenotypic QTL loci. We found an eQTL hotspot on rat chromosome 17 that is causally associated with multiple MetS-related traits and found RGD1562963, a gene regulated in cis by this eQTL hotspot, as the most likely eQTL driver gene directly affected by genetic variation between Lyon hypertensive and Lyon normotensive rats. Conclusions-Our study sheds light on the intricate pathogenesis of MetS and demonstrates that systems biology with high-throughput sequencing is a powerful method to study the pathogenesis of complex genetic diseases. © 2015 American Heart Association, Inc. Source


Wilkins M.R.,Imperial College London | Aldashev A.A.,National Academy of science of Kyrgyz Republic | Wharton J.,Imperial College London | Rhodes C.J.,Imperial College London | And 15 more authors.
Circulation: Cardiovascular Genetics | Year: 2014

Background-Human variation in susceptibility to hypoxia-induced pulmonary hypertension is well recognized. Highaltitude residents who do not develop pulmonary hypertension may host protective gene mutations. Methods and Results-Exome sequencing was conducted on 24 unrelated Kyrgyz highlanders living 2400 to 3800 m above sea level, 12 (10 men; mean age, 54 years) with an elevated mean pulmonary artery pressure (mean±SD, 38.7±2.7 mm Hg) and 12 (11 men; mean age, 52 years) with a normal mean pulmonary artery pressure (19.2±0.6 mm Hg) to identify candidate genes that may influence the pulmonary vascular response to hypoxia. A total of 140 789 exomic variants were identified and 26 116 (18.5%) were classified as novel or rare. Thirty-three novel or rare potential pathogenic variants (frameshift, essential splice-site, and nonsynonymous) were found exclusively in either ≥3 subjects with high-altitude pulmonary hypertension or ≥3 highlanders with a normal mean pulmonary artery pressure. A novel missense mutation in GUCY1A3 in 3 subjects with a normal mean pulmonary artery pressure encodes an α1-A680T soluble guanylate cyclase (sGC) variant. Expression of the α1-A680T sGC variant in reporter cells resulted in higher cyclic guanosine monophosphate production compared with the wild-type enzyme and the purified α1-A680T sGC exhibited enhanced sensitivity to nitric oxide in vitro. Conclusions-The α1-A680T sGC variant may contribute to protection against high-altitude pulmonary hypertension and supports sGC as a pharmacological target for reducing pulmonary artery pressure in humans at altitude. © 2014 American Heart Association, Inc. Source


Johnson M.D.,Physiological Genomics and Medicine Group | Johnson M.D.,Imperial College London | Mueller M.,Physiological Genomics and Medicine Group | Mueller M.,Imperial College London | And 23 more authors.
PLoS Genetics | Year: 2014

Epigenetic marks such as cytosine methylation are important determinants of cellular and whole-body phenotypes. However, the extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. Here we present the first genome-wide study of cytosine methylation at single-nucleotide resolution in an animal model of human disease. We used whole-genome bisulfite sequencing in the spontaneously hypertensive rat (SHR), a model of cardiovascular disease, and the Brown Norway (BN) control strain, to define the genetic architecture of cytosine methylation in the mammalian heart and to test for association between methylation and pathophysiological phenotypes. Analysis of 10.6 million CpG dinucleotides identified 77,088 CpGs that were differentially methylated between the strains. In F1 hybrids we found 38,152 CpGs showing allele-specific methylation and 145 regions with parent-of-origin effects on methylation. Cis-linkage explained almost 60% of inter-strain variation in methylation at a subset of loci tested for linkage in a panel of recombinant inbred (RI) strains. Methylation analysis in isolated cardiomyocytes showed that in the majority of cases methylation differences in cardiomyocytes and non-cardiomyocytes were strain-dependent, confirming a strong genetic component for cytosine methylation. We observed preferential nucleotide usage associated with increased and decreased methylation that is remarkably conserved across species, suggesting a common mechanism for germline control of inter-individual variation in CpG methylation. In the RI strain panel, we found significant correlation of CpG methylation and levels of serum chromogranin B (CgB), a proposed biomarker of heart failure, which is evidence for a link between germline DNA sequence variation, CpG methylation differences and pathophysiological phenotypes in the SHR strain. Together, these results will stimulate further investigation of the molecular basis of locally regulated variation in CpG methylation and provide a starting point for understanding the relationship between the genetic control of CpG methylation and disease phenotypes. © 2014 Johnson et al. Source


Maratou K.,Physiological Genomics and Medicine Group | Behmoaras J.,Imperial College London | Fewings C.,Physiological Genomics and Medicine Group | Srivastava P.,Physiological Genomics and Medicine Group | And 5 more authors.
Genes and Immunity | Year: 2011

Crescentic glomerulonephritis (CRGN) is a major cause of rapidly progressive renal failure for which the underlying genetic basis is unknown. Wistar-Kyoto (WKY) rats show marked susceptibility to CRGN, whereas Lewis rats are resistant. Glomerular injury and crescent formation are macrophage dependent and mainly explained by seven quantitative trait loci (Crgn1-7). Here, we used microarray analysis in basal and lipopolysaccharide (LPS)-stimulated macrophages to identify genes that reside on pathways predisposing WKY rats to CRGN. We detected 97 novel positional candidates for the uncharacterized Crgn3-7. We identified 10 additional secondary effector genes with profound differences in expression between the two strains (5-fold change, <1% false discovery rate) for basal and LPS-stimulated macrophages. Moreover, we identified eight genes with differentially expressed alternatively spliced isoforms, by using an in-depth analysis at the probe level that allowed us to discard false positives owing to polymorphisms between the two rat strains. Pathway analysis identified several common linked pathways, enriched for differentially expressed genes, which affect macrophage activation. In summary, our results identify distinct macrophage transcriptome profiles between two rat strains that differ in susceptibility to glomerulonephritis, provide novel positional candidates for Crgn3-7 and define groups of genes that play a significant role in differential regulation of macrophage activity. © 2011 Macmillan Publishers Limited All rights reserved. Source


Zhao L.,Imperial College London | Oliver E.,Imperial College London | Maratou K.,Physiological Genomics and Medicine Group | Atanur S.S.,Physiological Genomics and Medicine Group | And 17 more authors.
Nature | Year: 2015

The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension. © 2015 Macmillan Publishers Limited. All rights reserved. Source

Discover hidden collaborations