Entity

Time filter

Source Type

BRUSSEL, Belgium

Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENERGY.2010.2.1-1 | Award Amount: 7.02M | Year: 2010

The overall objective of the current project is a significant contribution to the dissemination of PV in order to improve the sustainability of the European energy supply and to strengthen the situation of the European PV industry. The approach to reach this overall objective is the development of solar cells which are substantially thinner than todays common practice. We will reduce the current solar cell thickness of typically 180 m down to a minimum of 50 m. At the same time we target to produce solar cells with high efficiencies in the range of 20% light conversion rate into power. The processes will be optimized and transferred into a pilot production line aiming at an efficiency of 19.5% on wafers of 100 m thickness at a yield that is comparable to the one in standard production lines. This shall help to drive down production costs significantly and save Si resources from todays 8 grams per watt to 3 grams per watt. In more detail the following topics are addressed: Wafering from Si ingots, surface passivation, light trapping, solar cell and module processing and handling of the thin wafers The partners of this project form an outstanding consortium to reach the project goals, including four leading European R&D institutes as well as four companies with recorded and published expertise in the field of thin solar cells and modules and handling of such. The project is structured in 10 work packages covering the process chain from wafer to module and the transfer into pilot production already at mid term as well as integral eco-assessment and management tasks.


Trademark
Photovoltech N.V. and Imec | Date: 2004-08-24

PHOTOVOLTAIC CELLS, PHOTOVOLTAIC MODULES, PHOTOVOLTAIC SYSTEMS COMPRISED OF PHOTOVOLTAIC CELLS, PHOTOVOLTAIC MODULES. PRODUCTION OF PHOTOVOLTAIC ENERGY. SCIENTIFIC AND INDUSTRIAL RESEARCH, TECHNICAL PROJECT STUDIES, LICENSING OF INTELLECTUAL PROPERTY RELATED TO PHOTOVOLTAIC CELLS, MODULES, AND RELATED PRODUCTS AND THE PRODUCTION TECHNOLOGY.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENERGY-2007-2.1-09 | Award Amount: 6.35M | Year: 2008

The overall objective of the current project is to make a significant contribution to the dissemination of PV in order to improve the sustainability of the European energy supply, to reduce environmental hazards such as global warming and to strengthen the economical situation of the European PV industry. The main project objective is the demonstration of PV modules using solar cells which are substantially thinner than todays common practice. We will reduce the current solar cell thickness from typically 200-250 m down to 100 m. Assuming a projected kerf loss of 120 m for 2010, this will enable more than 50% additional wafers to be cut from each silicon ingot. Additionally, by using advanced solar cell device structures and module interconnection technology, we target to increase the average efficiency for these thin cells up to 19% for mono-crystalline and 17.2% for multi-crystalline silicon and to reach a module-to-cell efficiency ratio above 90%. The processing and handling of wafers and cells will be adapted in order to maintain standard processing yields. Including scaling aspects, this corresponds to a module cost reduction of approximately 30% until 2011 and 1.0 /Wp extrapolated until 2016. Furthermore Si demand can be reduced from 10 to 6 g/Wp providing a significant effect on the eco-impact of PV power generation. The partners of this project form an outstanding consortium to reach the project goals, including two leading European R&D institutes as well as five companies with recorded and published expertise in the field of thin solar cells. The project is structured in 5 work packages covering the process chain from wafer to module as well as integral eco-assessment and management tasks. The expected impact of the project is a PV energy cost reduction of approximately 30%, a significant reduction of greenhouse gas emissions and an improved competitiveness of the European solar cell, module and equipment manufacturers.

Discover hidden collaborations