Philip Morris International Research Laboratories Pte Ltd

Singapore, Singapore

Philip Morris International Research Laboratories Pte Ltd

Singapore, Singapore

Time filter

Source Type

Szostak J.,Philip Morris Products S.A. | Boue S.,Philip Morris Products S.A. | Talikka M.,Philip Morris Products S.A. | Guedj E.,Philip Morris Products S.A. | And 5 more authors.
Food and Chemical Toxicology | Year: 2017

Experimental studies clearly demonstrate a causal effect of cigarette smoking on cardiovascular disease. To reduce the individual risk and population harm caused by smoking, alternative products to cigarettes are being developed. We recently reported on an apolipoprotein E-deficient (Apoe−/-) mouse inhalation study that compared the effects of exposure to aerosol from a candidate modified risk tobacco product, Tobacco Heating System 2.2 (THS2.2), and smoke from the reference cigarette (3R4F) on pulmonary and vascular biology. Here, we applied a transcriptomics approach to evaluate the impact of the exposure to 3R4F smoke and THS2.2 aerosol on heart tissues from the same cohort of mice. The systems response profiles demonstrated that 3R4F smoke exposure led to time-dependent transcriptomics changes (False Discovery Rate (FDR) < 0.05; 44 differentially expressed genes at 3-months; 491 at 8-months). Analysis of differentially expressed genes in the heart tissue indicated that 3R4F exposure induced the downregulation of genes involved in cytoskeleton organization and the contractile function of the heart, notably genes that encode beta actin (Actb), actinin alpha 4 (Actn4), and filamin C (Flnc). This was accompanied by the downregulation of genes related to the inflammatory response. None of these effects were observed in the group exposed to THS2.2 aerosol. © 2017


Phillips B.,Philip Morris International Research Laboratories Pte Ltd | Esposito M.,Philip Morris Products S.A. | Verbeeck J.,Philip Morris Products S.A. | Boue S.,Philip Morris Products S.A. | And 12 more authors.
Inhalation Toxicology | Year: 2015

Toxicity of nebulized nicotine (Nic) and nicotine/pyruvic acid mixtures (Nic/Pyr) was characterized in a 28-day Organization for Economic Co-operation and Development 412 inhalation study with additional transcriptomic and lipidomic analyses. Sprague-Dawley rats were nose-only exposed, 6 h/day, 5 days/week to filtered air, saline, nicotine (50 μg/l), sodium pyruvate (NaPyr, 33.9 μg/l) or equimolar Nic/Pyr mixtures (18, 25 and 50 μg nicotine/l). Saline and NaPyr caused no health effects, but rats exposed to nicotine-containing aerosols had decreased body weight gains and concentration-dependent increases in liver weight. Blood neutrophil counts were increased and lymphocyte counts decreased in rats exposed to nicotine; activities of alkaline phosphatase and alanine aminotransferase were increased, and levels of cholesterol and glucose decreased. The only histopathologic finding in non-respiratory tract organs was increased liver vacuolation and glycogen content. Respiratory tract findings upon nicotine exposure (but also some phosphate-buffered saline aerosol effects) were observed only in the larynx and were limited to adaptive changes. Gene expression changes in the lung and liver were very weak. Nic and Nic/Pyr caused few significant changes (including Cyp1a1 gene upregulation). Changes were predominantly related to energy metabolism and fatty acid metabolism but did not indicate an obvious toxicity-related response. Nicotine exposure lowered plasma lipids, including cholesteryl ester (CE) and free cholesterol and, in the liver, phospholipids and sphingolipids. Nic, NaPyr and Nic/Pyr decreased hepatic triacylglycerol and CE. In the lung, Nic and Nic/Pyr increased CE levels. These data suggest that only minor biologic effects related to inhalation of Nic or Nic/Pyr aerosols were observed in this 28-day study. © 2015 Informa Healthcare USA.


Kek R.,11 Health | Hapuarachchi H.C.,11 Health | Chung C.-Y.,Philip Morris International Research Laboratories Pte Ltd | Humaidi M.B.,11 Health | And 8 more authors.
Journal of Medical Entomology | Year: 2014

Aedes albopictus (Skuse) is a competent vector of arboviruses of public health importance, including dengue virus (DENV) and chikungunya virus viruses. Ae. albopictus is the primary vector of chikungunya virus in Singapore. However, despite being ubiquitous, it plays a secondary role in DENV transmission. The vectorial capacity of Ae. albopictus for DENV in field settings appears to be weak because dengue primarily occurs in Aedes aegypti (L.)-dominated, urban settings of the country. As host-seeking behavior is one of the determinants of vectorial capacity, we screened 6,762 female Ae. albopictus from rural, semiurban, and urban locations in Singapore for avian and nonavian bloodmeals using two polymerase chain reaction-sequencing assays developed in-house. The majority (83.2%, n = 79) of bloodmeals from rural and semiurban areas were from humans. However, Ae. albopictus was also found to feed on shrews, swine, dogs, cats, turtles, and multiple hosts in rural settings. In urban areas, all positive bloodmeals were from humans. There were no avian bloodmeals. Our findings testify that Ae. albopictus is highly anthropophagic even in rural settings, but become opportunistic in extremely low human abundance. This opportunistic feeding behavior warrants further investigations into the vectorial capacity of Ae. albopictus to assess its role in arbovirus transmission in endemic habitats. © 2014 Entomological Society of America.


PubMed | Philip Morris International Research Laboratories Pte Ltd, Philip Morris Products S.A. and Former employee of Philip Morris International R&D
Type: | Journal: Regulatory toxicology and pharmacology : RTP | Year: 2016

The toxicity of a mentholated version of the Tobacco Heating System (THS2.2M), a candidate modified risk tobacco product (MRTP), was characterized in a 90-day OECD inhalation study. Differential gene and protein expression analysis of nasal epithelium and lung tissue was also performed to record exposure effects at the molecular level. Rats were exposed to filtered air (sham), to THS2.2M (at 15, 23 and 50g nicotine/l), to two mentholated reference cigarettes (MRC) (at 23g nicotine/l), or to the 3R4F reference cigarette (at 23g nicotine/l). MRCs were designed to meet 3R4F specifications. Test atmosphere analyses demonstrated that aldehydes were reduced by 75%-90% and carbon monoxide by 98% in THS2.2M aerosol compared with MRC smoke; aerosol uptake was confirmed by carboxyhemoglobin and menthol concentrations in blood, and by the quantities of urinary nicotine metabolites. Systemic toxicity and alterations in the respiratory tract were significantly lower in THS2.2M-exposed rats compared with MRC and 3R4F. Pulmonary inflammation and the magnitude of the changes in gene and protein expression were also dramatically lower after THS2.2M exposure compared with MRCs and 3R4F. No menthol-related effects were observed after MRC mainstream smoke-exposure compared with 3R4F.


PubMed | Philip Morris International Research Laboratories Pte Ltd and Philip Morris Products S.A.
Type: | Journal: Regulatory toxicology and pharmacology : RTP | Year: 2016

Modified-risk tobacco products (MRTP) are designed to reduce the individual risk of tobacco-related disease as well as population harm compared to smoking cigarettes. Experimental proof of their benefit needs to be provided at multiple levels in research fields. Here, we examined microRNA (miRNA) levels in the lungs of rats exposed to a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2) in a 90-day OECD TG-413 inhalation study. Our aim was to assess the miRNA response to THS2.2 aerosol compared with the response to combustible cigarettes (CC) smoke from the reference cigarette 3R4F. CC smoke exposure, but not THS2.2 aerosol exposure, caused global miRNA downregulation, which may be explained by the interference of CC smoke constituents with the miRNA processing machinery. Upregulation of specific miRNA species, such as miR-146a/b and miR-182, indicated that they are causal elements in the inflammatory response in CC-exposed lungs, but they were reduced after THS2.2 aerosol exposure. Transforming transcriptomic data into protein activity based on corresponding downstream gene expression, we identified potential mechanisms for miR-146a/b and miR-182 that were activated by CC smoke but not by THS2.2 aerosol and possibly involved in the regulation of those miRNAs. The inclusion of miRNA profiling in systems toxicology approaches increases the mechanistic understanding of the complex exposure responses.


PubMed | Philip Morris International Research Laboratories Pte Ltd, Philip Morris Products S.A. and WK Schlage Biology Consulting
Type: Comparative Study | Journal: Toxicological sciences : an official journal of the Society of Toxicology | Year: 2016

Smoking cigarettes is a major risk factor in the development and progression of cardiovascular disease (CVD) and chronic obstructive pulmonary disease (COPD). Modified risk tobacco products (MRTPs) are being developed to reduce smoking-related health risks. The goal of this study was to investigate hallmarks of COPD and CVD over an 8-month period in apolipoprotein E-deficient mice exposed to conventional cigarette smoke (CS) or to the aerosol of a candidate MRTP, tobacco heating system (THS) 2.2. In addition to chronic exposure, cessation or switching to THS2.2 after 2 months of CS exposure was assessed. Engaging a systems toxicology approach, exposure effects were investigated using physiology and histology combined with transcriptomics, lipidomics, and proteomics. CS induced nasal epithelial hyperplasia and metaplasia, lung inflammation, and emphysematous changes (impaired pulmonary function and alveolar damage). Atherogenic effects of CS exposure included altered lipid profiles and aortic plaque formation. Exposure to THS2.2 aerosol (nicotine concentration matched to CS, 29.9mg/m(3)) neither induced lung inflammation or emphysema nor did it consistently change the lipid profile or enhance the plaque area. Cessation or switching to THS2.2 reversed the inflammatory responses and halted progression of initial emphysematous changes and the aortic plaque area. Biological processes, including senescence, inflammation, and proliferation, were significantly impacted by CS but not by THS2.2 aerosol. Both, cessation and switching to THS2.2 reduced these perturbations to almost sham exposure levels. In conclusion, in this mouse model cessation or switching to THS2.2 retarded the progression of CS-induced atherosclerotic and emphysematous changes, while THS2.2 aerosol alone had minimal adverse effects.


PubMed | Philip Morris International Research Laboratories Pte Ltd and Philip Morris Products S.A.
Type: | Journal: Regulatory toxicology and pharmacology : RTP | Year: 2016

The objective of the study was to characterize the toxicity from sub-chronic inhalation of test atmospheres from the candidate modified risk tobacco product (MRTP), Tobacco Heating System version 2.2 (THS2.2), and to compare it with that of the 3R4F reference cigarette. A 90-day nose-only inhalation study on Sprague-Dawley rats was performed, combining classical and systems toxicology approaches. Reduction in respiratory minute volume, degree of lung inflammation, and histopathological findings in the respiratory tract organs were significantly less pronounced in THS2.2-exposed groups compared with 3R4F-exposed groups. Transcriptomics data obtained from nasal epithelium and lung parenchyma showed concentration-dependent differential gene expression following 3R4F exposure that was less pronounced in the THS2.2-exposed groups. Molecular network analysis showed that inflammatory processes were the most affected by 3R4F, while the extent of THS2.2 impact was much lower. Most other toxicological endpoints evaluated did not show exposure-related effects. Where findings were observed, the effects were similar in 3R4F- and THS2.2-exposed animals. In summary, toxicological changes observed in the respiratory tract organs of THS2.2 aerosol-exposed rats were much less pronounced than in 3R4F-exposed rats while other toxicological endpoints either showed no exposure-related effects or were comparable to what was observed in the 3R4F-exposed rats.

Loading Philip Morris International Research Laboratories Pte Ltd collaborators
Loading Philip Morris International Research Laboratories Pte Ltd collaborators