Philadelphia Mixing Solutions Ltd

Palmyra, PA, United States

Philadelphia Mixing Solutions Ltd

Palmyra, PA, United States
SEARCH FILTERS
Time filter
Source Type

Wu B.,Philadelphia Mixing Solutions Ltd.
Computers and Electronics in Agriculture | Year: 2013

This article is a critical review of the state-of-the-art of computational fluid dynamics (CFD) used to investigate bioreactors that produce biomethane and biohydrogen by means of biochemical conversion technology. First, the issue on rheology of biomaterials is addressed. Second, the CFD development in six major bioreactors is documented. The bioreactors studied are: (1) anaerobic lagoon, (2) plug-flow digester, (3) complete-mix digester, (4) anaerobic biohydrogen fermenter, (5) anaerobic biofilm reactor, and (6) photobioreactor. Third, the CFD simulation strategy that includes pre-processing and solver as well as post-processing is summarized. Fourth, opportunities and challenges for CFD applications in bioenergy are presented. Finally, specific comments and suggestions are made on: rheology, heat transfer, mass transfer, light transfer, turbulence, and multiphase flow. The primary goal of CFD research in biorenewable energy to develop a comprehensive model that integrates physical and biological processes is highlighted. © 2012 Elsevier B.V..


Wu B.,Philadelphia Mixing Solutions Ltd.
Biotechnology and Bioengineering | Year: 2012

A computational fluid dynamics (CFD) model that simulates mechanical mixing for high-solids anaerobic digestion was developed. Numerical simulations of mixing manure slurry which exhibits non-Newtonian pseudo-plastic fluid behavior were performed for six designs: (i) one helical ribbon impeller; (ii) one anchor impeller; (iii) one curtain-type impeller; (iv) three counterflow (CF-2) impellers; (v) two modified high solidity (MHS 3/39°) impellers; and (vi) two pitched blade turbine impellers. The CFD model was validated against measurements for mixing a Herschel-Bulkley fluid by ribbon and anchor impellers. Based on mixing time with respect to mixing energy level, three impeller types (ribbon, CF-2, and MHS 3/39°) stand out when agitating highly viscous fluids, of these mixing with two MHS 3/39° impellers requires the lowest power input to homogenize the manure slurry. A comparison of digestion material demonstrates that the mixing energy varies with manure type and total solids concentration to obtain a given mixing time. Moreover, an in-depth discussion about the CFD strategy, the influences of flow regime and impeller type on mixing characteristics, and the intrinsic relation between mixing and flow field is included. © 2012 Wiley Periodicals, Inc.


Wu B.,Philadelphia Mixing Solutions Ltd.
Biotechnology and Bioengineering | Year: 2012

An extensive investigation of anaerobic methane fermentation requires identifying the relationship between the physical environment and biological process. In this study, a computational fluid dynamics (CFD) technique was used to characterize bacterial fermentation mechanisms intertwined with mixing and heat transfer in anaerobic digesters. The results demonstrate that the methane yield remains almost unchanged while the energy efficiency decreases with increasing mixing power in a complete-mix digester, and that the energy output increases nonlinearly with the increase in heating energy in a plug-flow digester. The CFD method can be applied to other bioreactors to gain valuable insights into their behavior as well. Integrating flow and temperature with kinetic behavior for anaerobic digestion not only solves the controversy about how mixing influences the digestive process, but also assists in optimizing the digester design and increasing the efficiency of energy conversion, and additionally, provides a reference for improving the mixing guidelines recommended by the U.S. Environmental Protection Agency. © 2012 Wiley Periodicals, Inc.


Wu B.,Philadelphia Mixing Solutions Ltd.
Biotechnology and Bioengineering | Year: 2012

A comprehensive study of anaerobic digestion requires an advanced turbulence model technique to accurately predict mixing flow patterns because the digestion process that involves mass transfer between anaerobes and their substrates is primarily dependent on detailed information about the fine structure of turbulence in the digesters. This study presents a large eddy simulation (LES) of mechanical agitation of non-Newtonian fluids in anaerobic digesters, in which the sliding mesh method is used to characterize the impeller rotation. The three subgrid scale (SGS) models investigated are: (i) Smagorinsky-Lilly model, (ii) wall-adapting local eddy-viscosity model, and (iii) kinetic energy transport (KET) model. The simulation results show that the three SGS models produce very similar flow fields. A comparison of the simulated and measured axial velocities indicates that the LES profile shapes are in general agreement with the experimental data but they differ markedly in velocity magnitudes. A check of impeller power and flow numbers demonstrates that all the SGS models give excellent predictions, with the KET model performing the best. Moreover, the performance of six Reynolds-averaged Navier-Stokes turbulence models are assessed and compared with the LES results. © 2011 Wiley Periodicals, Inc.


Wu B.,Philadelphia Mixing Solutions Ltd.
Water Research | Year: 2010

A computational fluid dynamics (CFD) model that characterizes mechanical draft tube mixing in egg-shaped anaerobic digesters was developed. Simulation of flow patterns were carried out with a propeller rotating from 400 to 750 rpm, assuming liquid manure to be Newtonian (water) and non-Newtonian fluids depending on the total solids (TS) concentration. Power number and flow number of the propeller in water mixing were validated against lab specifications and experimental data from a field test. The rotational direction and placement of the propeller were examined to identify the primary pumping mode and the optimum position of the propeller fixed inside the tube. Quantitative comparisons of two mixing methods and two digester shapes indicated that mechanical draft tube mixing is more efficient than external pumped recirculation, and that the egg shape provides for more efficient mixing than the cylindrical shape. Furthermore, scale-up rules for mixing in egg-shaped digesters were investigated. © 2009 Elsevier Ltd. All rights reserved.


Wu B.,Philadelphia Mixing Solutions Ltd.
Environmental Science and Technology | Year: 2010

In this paper, 12 turbulence models for single-phase non-Newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester. © 2010 American Chemical Society.


This study evaluates six turbulence models for mechanical agitation of non-Newtonian fluids in a lab-scale anaerobic digestion tank with a pitched blade turbine (PBT) impeller. The models studied are: (1) the standard k-e{open} model, (2) the RNG k-e{open} model, (3) the realizable k-e{open} model, (4) the standard k-ω model, (5) the SST k-ω model, and (6) the Reynolds stress model. Through comparing power and flow numbers for the PBT impeller obtained from computational fluid dynamics (CFD) with those from the lab specifications, the realizable k-e{open} and the standard k-ω models are found to be more appropriate than the other turbulence models. An alternative method to calculate the Reynolds number for the moving zone that characterizes the impeller rotation is proposed to judge the flow regime. To check the effect of the model setup on the predictive accuracy, both discretization scheme and numerical approach are investigated. The model validation is conducted by comparing the simulated velocities with experimental data in a lab-scale digester from literature. Moreover, CFD simulation of mixing in a full-scale digester with two side-entry impellers is performed to optimize the installation. © 2010 Elsevier Ltd.


Wu B.,Philadelphia Mixing Solutions Ltd.
Water Research | Year: 2010

This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing. © 2010 Elsevier Ltd.


Patent
Philadelphia Mixing Solutions Ltd. | Date: 2015-05-04

An apparatus and method for mixing a liquid having particulate includes a vessel for containing me liquid an axial impeller rotating about a substantially vertical axis. The impeller is adapted for submerging below the liquid surface by a distance approximately one-quarter to one-half of the height of the liquid. The impeller is oriented upwardly to produce (a) an inner, upward flow region located along the vertical axis of the vessel, (b) a transition flow region above the impeller in which liquid moves radially outwardly toward the vessel sidewall, and (c) an outer, downward flow region located along the sidewall. The impeller spins at a variable speed, such that the flow is capable of entraining solid particles having a settling velocity of up to approximately 1 foot per minute in the liquid, and the speed of the impeller is chosen to enable particles having a desired settling velocity to settle to the vessel bottom.


Patent
Philadelphia Mixing Solutions Ltd. | Date: 2013-06-20

An axial impeller has blades formed from sheet metal blanks that are configured from taking a desired impeller blade and mathematically unwinding the blade to its flat counterpart. Preferably, the impeller blade is formed from a single rolling operation. The result of a thin, elongate blade, preferably having a trailing edge that defines a helix with rearwardly skewed, forwardly raked blades, provides an efficient impeller having good anti-ragging properties.

Loading Philadelphia Mixing Solutions Ltd collaborators
Loading Philadelphia Mixing Solutions Ltd collaborators