Time filter

Source Type

Oxon, United Kingdom

Journal of Radiological Protection | Year: 2014

PHE has undertaken a simple dose assessment for members of the public living in the UK at the time of the accident at the Fukushima Daiichi nuclear power station in March 2011. PHE reported that there was no public health risk to the UK from the release of material from the accident in a statement made on 29 March 2013. This assessment confirms the initial estimate of the doses which were about the same as a person in the UK would receive in an hour from natural background. © 2014 IOP Publishing Ltd. Source

Ainsbury E.A.,PHE CRCE | Bouffler S.,PHE CRCE | Cocker M.,University of Oxford | Gilvin P.,PHE CRCE | And 4 more authors.
Journal of Radiological Protection | Year: 2014

The ICRP has recently recommended that the occupational exposure limit for the lens of the eye be reduced to 20 mSv in a year, averaged over defined periods of 5 years, with no single year exceeding 50 mSv. There has been concern amongst some groups of individuals, particularly interventional cardiologists and radiologists as well as relevant professional bodies, that implementation of these recommendations into UK law will adversely affect working patterns. However, despite a number of informative European studies, there is currently little UK dosimetry data available upon which judgements can effectively be based. In order to address this knowledge gap, Public Health England has carried out a small, targeted survey of UK lens doses to medical staff undertaking procedures likely to involve the highest levels of radiation exposure. Two out of a total of 61 individuals surveyed had projected annual doses which could be close to 20 mSv, measured outside lead glasses. Use of protective equipment was generally good; however, lead glasses were only used by 9 participants. The results of this survey suggest that compliance with the ICRP recommendations is likely to be possible for most individuals in the UK medical sector. © 2014 IOP Publishing Ltd. Source

Discover hidden collaborations