Time filter

Source Type

Santa Clara, CA, United States

Yan Q.,PharmTao | Yan Q.,University of Phoenix
Personalized Medicine | Year: 2011

With its multidimensional features and systems biology approaches, developments in psychoneuroimmunology may provide the basis for the translation of scientific discoveries into personalized and systems medicine. To achieve this goal, several key issues need to be emphasized and resolved. These key issues include the identification of biomarkers for accurate diagnosis and treatment, the understanding of the systems interactions and networks, and the systemic profiling of patient subgroups. Recognition of systemic biomarkers may provide insight into the complex multidirectional interactions among psychological and behavioral factors, the nervous system and the immune system. Systems biology studies of complex mechanisms such as inflammation at various levels may enable the discovery of common targets for different diseases from depression to cancer. Such elucidation would enable the classification of patient patterns and subgroups for personalized interventions. Understanding of these key issues would contribute to the establishment of systems models and the development of integrative prevention and treatment strategies in multiple dimensions. © 2011 Future Medicine Ltd.

Yan Q.,PharmTao
Methods in molecular biology (Clifton, N.J.) | Year: 2010

The immune system plays an important role in the development of personalized medicine for a variety of diseases including cancer, autoimmune diseases, and infectious diseases. Immunoinformatics, or computational immunology, is an emerging area that provides fundamental methodologies in the study of immunomics, that is, immune-related genomics and proteomics. The integration of immunoinformatics with systems biology approaches may lead to a better understanding of immune-related diseases at various systems levels. Such methods can contribute to translational studies that bring scientific discoveries of the immune system into better clinical practice. One of the most intensely studied areas of the immune system is immune epitopes. Epitopes are important for disease understanding, host-pathogen interaction analyses, antimicrobial target discovery, and vaccine design. The information about genetic diversity of the immune system may help define patient subgroups for individualized vaccine or drug development. Cellular pathways and host immune-pathogen interactions have a crucial impact on disease pathogenesis and immunogen design. Epigenetic studies may help understand how environmental changes influence complex immune diseases such as allergy. High-throughput technologies enable the measurements and catalogs of genes, proteins, interactions, and behavior. Such perception may contribute to the understanding of the interaction network among humans, vaccines, and drugs, to enable new insights of diseases and therapeutic responses. The integration of immunomics information may ultimately lead to the development of optimized vaccines and drugs tailored to personalized prevention and treatment. An immunoinformatics portal containing relevant resources is available at http://immune.pharmtao.com.

Yan Q.,PharmTao | Yan Q.,University of Phoenix
Methods in Molecular Biology | Year: 2012

Developments in psychoneuroimmunology (PNI) need to be translated into personalized medicine to achieve better clinical outcomes. One of the most critical steps in this translational process is to identify systemic biomarkers for better diagnosis and treatment. Applications of systems biology approaches in PNI would enable the insights into the correlations among various systems and different levels for the identification of the basic elements of the psychophysiological framework. Among the potential PNI biomarkers, inflammatory markers deserve special attention as they play a pivotal role linking various health conditions and disorders. The elucidation of inflammatory markers, cytokine networks, and immune-brain-behavior interactions may help establish PNI profiles for the identification of potential targets for personalized interventions in at risk populations. The understanding of the general systemic pathways among different disorders may contribute to the transition from the disease-centered medicine to patient-centered medicine. Integrative strategies targeting these factors and pathways would be useful for the prevention and treatment of a spectrum of diseases that share the common links. Examples of the translational implications of potential PNI biomarkers and networks in diseases including depression, Alzheimer's disease, obesity, cardiovascular disease, stroke, and HIV are discussed in details. © 2012 Springer Science+Business Media, LLC.

Influenza virus infection is a public health threat worldwide. It is urgent to develop effective methods and tools for the prevention and treatment of influenza. Influenza vaccines have significant immune response variability across the population. Most of the current circulating strains of influenza A virus are resistant to anti-influenza drugs. It is necessary to understand how genetic variants affect immune responses, especially responses to the HA and NA transmembrane glycoproteins. The elucidation of the underlying mechanisms can help identify patient subgroups for effective prevention and treatment. New personalized vaccines, adjuvants, and drugs may result from the understanding of interactions of host genetic, environmental, and other factors. The systems biology approach is to simulate and model large networks of the interacting components, which can be excellent targets for antiviral therapies. The elucidation of host-influenza interactions may provide an integrative view of virus infection and host responses. Understanding the host-influenza-drug interactions may contribute to optimal drug combination therapies. Insight of the host-influenza-vaccine interactions, especially the immunogenetics of vaccine response, may lead to the development of better vaccines. Systemic studies of host-virus-vaccine-drug-environment interactions will enable predictive models for therapeutic responses and the development of individualized therapeutic strategies. A database containing such information on personalized and systems medicine for influenza is available at http://flu.pharmtao.com.

The study of membrane transporters may result in breakthroughs in the discovery of new drugs and the development of safer drugs. Membrane transporters are essential for fundamental cellular functions and normal physiological processes. These molecules influence drug absorption and distribution and play key roles in drug therapeutic effects. A primary goal of current research in drug discovery and development is to fully understand the interactions between transporters and drugs at both the system levels in the human body and the individual level for personalized therapy. Systematic studies of membrane transporters will help in not only better understanding of diseases from the systems biology point of view but also better drug design and development. The exploration of both pharmacogenomics and systems biology in transporters is necessary to connect individuals' genetic profiles with systematic drug responses in the human body. Understanding of gene-diet interactions and the effects of epigenetic changes on transporter gene expression may help improve clinical drug efficacy. The integration of pharmacogenomics, nutrigenomics, epigenetics, and systems biology may enable us to move from disease treatment to disease prevention and optimal health. The key issues in such integrative understanding include the correlations between structure and function, genotype and phenotype, and systematic interactions among transporters, other proteins, nutrients, drugs, and the environment. The exploration in these key issues may ultimately contribute to personalized medicine with high efficacy but less toxicity.

Discover hidden collaborations