Entity

Time filter

Source Type

Saarbrücken, Germany

Franzen L.,Saarland University | Windbergs M.,Saarland University | Windbergs M.,Helmholtz Center for Infection Research | Windbergs M.,PharmBioTec GmbH | And 2 more authors.
Skin Pharmacology and Physiology | Year: 2012

To perform accurate tape-stripping measurements and to control for site-specific and interindividual differences the amount of stratum corneum (SC) removed by each tape and the total SC thickness must be known. The purpose of this study was to evaluate the use of near-infrared (NIR) densitometry at λ = 850 nm for in situ determination of the total SC thickness. Quantitative tape stripping was performed on pig ear skin. The amount of SC removed by each tape was measured by NIR densitometry and by microprotein assay. Derived from the linear correlation between both measurements, a conversion factor was calculated that relates the individual NIR densitometry readings to the thickness of the SC on the corresponding tape (lSC-tape [μm] = (abs.850 - abs.850(blank))/23.9). The total SC thickness was determined based on the accumulated values of all tapes applied in quantitative tape stripping and compared to the values obtained from microscopic cross sections of biopsies. The total SC thickness was correctly determined by infrared densitometry independent of storage time and conditions (4°C up to 24 h; -21°C up to 3 months) in comparison with the standard histological evaluation. Copyright © 2012 S. Karger AG, Basel.


Franzen L.,Saarland University | Windbergs M.,Saarland University | Windbergs M.,Helmholtz Center for Infection Research | Windbergs M.,PharmBioTec GmbH
Journal of Raman Spectroscopy | Year: 2014

The opportunity of label-free and non-destructive detection of substances inside human skin by confocal Raman microscopy represents a novel approach for investigating drug penetration and permeation. Several studies already introduced confocal Raman microscopy for depth profiling in skin; however, the reported results show high deviations. Thus, analysis of the spectral variability of human skin itself is a necessary prerequisite for systematic quantitative investigations of drug penetration and permeation by confocal Raman microscopy. In our work, we acquired Raman depth profiles from excised human skin samples after abdominal plastic surgery and investigated the absolute intensity fluctuation of four major skin derived Raman peaks. The results prove the expected high variability in spectral intensity, but we could not detect dissimilarities between different skin donors. A detailed analysis of the major endogenous skin components revealed differences in spatial distribution which consequently affects their individual applicability as reference peaks for relative depth profiling. Furthermore, we discovered an increase in signal variability in deeper stratum corneum layers, which has to be considered in future substance depth profiling investigations. In addition, we discovered an exponential decay of the Raman signal for all major skin components accounting for signal attenuation inside biological tissue. Based on this mathematical description, quantitative follow-up of substances in human skin can be realized. All in all, the results of this study elucidate the necessity of substantial understanding of endogenous spectral characteristics inside human skin as essential prerequisite for rational depth profiling of substances in human skin. Copyright © 2013 John Wiley & Sons, Ltd.


Franzen L.,Saarland University | Anderski J.,Saarland University | Windbergs M.,Saarland University | Windbergs M.,Helmholtz Center for Infection Research | Windbergs M.,PharmBioTec GmbH
European Journal of Pharmaceutics and Biopharmaceutics | Year: 2015

For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. © 2015 Elsevier B.V. All rights reserved.


Franzen L.,Saarland University | Mathes C.,Saarland University | Hansen S.,Saarland University | Hansen S.,Helmholtz Center for Infection Research | And 4 more authors.
Journal of Biomedical Optics | Year: 2013

Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery. © 2013 SPIE.


Franzen L.,Saarland University | Windbergs M.,Saarland University | Windbergs M.,Helmholtz Center for Infection Research | Windbergs M.,PharmBioTec GmbH
Advanced Drug Delivery Reviews | Year: 2015

In the field of skin research, confocal Raman microscopy is an upcoming analytical technique. Substantial technical progress in design and performance of the individual setup components like detectors and lasers as well as the combination with confocal microscopy enables chemically selective and non-destructive sample analysis with high spatial resolution in three dimensions. Due to these advantages, the technique bears tremendous potential for diverse skin applications ranging from the analysis of physiological component distribution in skin tissue and the diagnosis of pathological states up to biopharmaceutical investigations such as drug penetration kinetics within the different tissue layers.This review provides a comprehensive introduction about the basic principles of Raman microscopy highlighting the advantages and considering the limitations of the technique for skin applications. Subsequently, an overview about skin research studies applying Raman spectroscopy is given comprising various in vitro as well as in vivo implementations. Furthermore, the future perspective and potential of Raman microscopy in the field of skin research are discussed. © 2015 Elsevier B.V.

Discover hidden collaborations