Time filter

Source Type

Madrid, Spain

Soini E.J.O.,ESiOR Oy | Garcia San Andres B.,PharmaMar | Joensuu T.,International Comprehensive Cancer Center Docrates
Annals of Oncology | Year: 2011

Background: To assess the cost-effectiveness of trabectedin compared with end-stage treatment (EST) after failure with anthracycline and/or ifosfamide in metastatic soft tissue sarcoma (mSTS). Design: Analysis was carried out using a probabilistic Markov model with trabectedin → EST and EST arms, three health states (stable disease, progressive disease and death) and a lifetime perspective (3% annual discount rate). Finnish resources (drugs, mSTS, adverse events and travelling) and costs (year 2008) were used. Efficacy was based on an indirect comparison of the STS-201 and European Organisation for Research and Treatment of Cancer trials. QLQ-C30 scale scores were mapped to 15D, Short Form 6D and EuroQol 5D utilities. The outcome measures were the cost-effectiveness acceptability frontier, incremental cost per life year gained (LYG) and quality-adjusted life year (QALY) gained and the expected value of perfect information (EVPI). Results: Trabectedin → EST was associated with 14.0 (95% confidence interval 9.1-19.2) months longer survival, €36 778 higher costs (€32 816 using hospital price for trabectedin) and €31 590 (€28 192) incremental cost per LYG with an EVPI of €3008 (€3188) compared with EST. With a threshold of €50 000 per LYG, trabectedin → EST had 98.5% (98.2%) probability of being cost-effective. The incremental cost per QALY gained with trabectedin → EST was €42 633-47 735 (€37 992-42 819) compared with EST. The results were relatively insensitive to changes. Conclusion: Trabectedin is a potentially cost-effective treatment of mSTS patients. © The Author 2010. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: KBBE-2008-3-2-07 | Award Amount: 4.98M | Year: 2009

The Project aims at the mining of individual enzymes and metabolic pathways from extremophilic marine organisms and the metagenomes from microbial communities from peculiar marine environments and consequent funnelling the new enzymatic reactions and processes towards the new biotechnological applications. Project builds up on the scientific and technological excellence of individual academic and industrial partners, and beyond that, on application of the state-of-the-art technologies for archiving, molecular screening for the activities (using a unique Surface Plasmon Resonance screening platform), protein structure elucidation, enzyme engineering and directed evolution and establishing new biotechnological processes (biocatalysis, synthesis of fine chemicals, etc.). Marine sampling hotspots to produce the metagenomic resources for their further exploration will cover the whole diversity of marine microbial life at its limits (hypersaline, low and high temperature, high pressure and low water activity conditions, etc.). Individual enzymes interacting with the substrates will be identified, and in case they are new, hyperexpressed and crystallized and their structures will be elucidated. Consequently, the most promising candidates will be scored against the chiral substrates of relevance for biocatalysis and their ability to perform in water-free systems will be evaluated, the directed evolution will be implemented to improve the performance, and specificity of the enzymes. A comprehensive bioinformatic survey throughout the whole tree of cellular life will reveal and suggest the new candidates homologous to the discovered new proteins, from other organisms to be cloned and assayed. The implementation of the set of new enzymes in the biotechnological processes for fine chemical synthesis and drug discovery will be conducted in a strong alliance with competent industrial partners.

Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2013-ITN | Award Amount: 3.90M | Year: 2013

Marine sponges harbour extremely diverse populations of microbes, and are world record holders for the production of a plethora of bioactive molecules. Previous studies, however, aiming at the growth of sponges or their associated microbes for the production of bioactive compounds to supply biological material for clinical trials, have been largely unsuccessful. BLUEPHARMTRAIN is a multi-disciplinary alliance of 20 academic and industrial partners that will excel in research and training through integration of complementary expertise in cell biology, microbiology, natural product chemistry, genomics & transcriptomics (omics) and socio-economics. We will adopt cutting-edge omics technologies to give a new boost to the more traditional disciplines: microbial isolation, cell culture and natural product chemistry to go beyond the current scientific frontiers. For example, metagenomic and transcriptomic data will be applied to identify the metabolic potential and restrictions of -yet- uncultured microbes and will serve for the design of tailor-made cultivation conditions. In addition, heterologous expression of bioactive gene clusters and enzymes able to perform unusual modifications will serve as an alternative strategy to unlock the bioactive potential of sponges. Thus we aim to develop an extensive technology platform that is applicable for obtaining a wide variety of bioactive compounds from distinct sponges and their microbes. BLUEPHARMTRAIN will provide a complementary set of experimental and conceptual local and network-wide training modules and workshops to 15 young researchers. The recruited fellows will work towards personalized training plans to meet individual needs and interests, generating a critical mass of young researchers in the emerging field of blue biotechnology. The presence of a large consortium of versatile biotechnology, pharmaceutical and consultancy firms ensures a good balance between academic and transferable skills acquired by the fellows.

Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: KBBE.2012.3.2-02 | Award Amount: 11.97M | Year: 2012

Marine microorganisms form an almost untapped resource of biotechnological potential. However, its use is hindered by the low success rate of isolation of novel microorganisms and often by poor growth efficiency. Hence, the vast majority of marine microorganisms has not been cultivated and is often considered as unculturable. MaCuMBA aims at improving the isolation rate and growth efficiency of marine microorganisms from conventional and extreme habitats, by applying innovative methods, and the use of automated high throughput procedures. The approaches include the co-cultivation of interdependent microorganisms, as well as gradient cultures and other methods mimicking the natural environment, and the exploitation of cell-to-cell communication. Signaling molecules produced by microorganisms may be necessary for stimulating growth of the same or other species, or may prevent their growth. Signaling molecules also represent an interesting and marketable product. MaCuMBA will make use of high throughput platforms such Cocagne, using gel micro-droplet technology, or MicroDish in which many thousands of cultures are grown simultaneously. Various single-cell isolation methods, such as optical tweezers, will aid the isolation of specific target cells. Isolated microorganisms as well as their genomes will be screened for a wide range of bioactive products and other properties of biotechnological interest, such as genetic transformability. Growth efficiency and expression of silent genes of selected strains will be increased also by using the clues obtained from genomic information. MaCuMBA is targeted to SMEs and industry and they make a significant part of the consortium, ensuring that the project focuses on the interests of these partners. Moreover, MaCuMBA has adopted a comprehensive and professional exploitation, dissemination, implementation, and education strategy, ensuring that MaCuMBAs results and products will be directed to end-users and stakeholders.

Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: OCEAN.2011-2 | Award Amount: 11.51M | Year: 2012

Micro B3 will develop innovative bioinformatic approaches and a legal framework to make large-scale data on marine viral, bacteria; archaeal and protists genomes and metagenomes accessible for marine ecosystems biology and to define new targets for biotechnological applications. Micro B3 will build upon a highly interdisciplinary consortium of 32 academic and industrial partners comprising world-leading experts in bioinformatics, computer science, biology, ecology, oceanography, bioprospecting and biotechnology, as well as legal aspects. Micro B3 is based on a strong user- and data basis from ongoing European sampling campaigns to long-term ecological research sites. For the first time a strong link between oceanographic and molecular microbial research will be established to integrate global marine data with research on microbial biodiversity and functions. The Micro B3 Information System will provide innovative open source software for data-processing, -integration, -visualisation, and -accessibility. Interoperability will be the key for seamless data transfer of sequence and contextual data to public repositories. Micro B3 will allow taking full advantage of current sequencing technologies to efficiently exploit large-scale sequence data in an environmental context. Micro B3 will create integrated knowledge to inform marine ecosystems biology and modelling. Moreover, it will facilitate detecting candidate genes to be explored by targeted laboratory experiments for biotechnology and for assigning potential functions to unknown genes. Micro B3 will develop clear IP agreements for the protection and sustainable use of pre-competitive microbial genetic resources and their exploitation in high potential commercial applications. To underline the translational character of Micro B3, outreach and training activities for diverse stakeholders are planned as well as an Ocean Sampling Day to transparently make project results accessible and gain valuable user feedback.

Discover hidden collaborations