Pharmahungary Group

Szeged, Hungary

Pharmahungary Group

Szeged, Hungary
Time filter
Source Type

Jankovic A.,University of Belgrade | Korac A.,University of Belgrade | Buzadzic B.,University of Belgrade | Stancic A.,University of Belgrade | And 5 more authors.
British Journal of Pharmacology | Year: 2017

Insulin sensitivity and metabolic homeostasis depend on the capacity of adipose tissue to take up and utilize excess glucose and fatty acids. The key aspects that determine the fuel-buffering capacity of adipose tissue depend on the physiological levels of the small redox molecule, nitric oxide (NO). In addition to impairment of NO synthesis, excessive formation of the superoxide anion (О2•–) in adipose tissue may be an important interfering factor diverting the signalling of NO and other reactive oxygen and nitrogen species in obesity, resulting in metabolic dysfunction of adipose tissue over time. Besides its role in relief from superoxide burst, enhanced NO signalling may be responsible for the therapeutic benefits of different superoxide dismutase mimetics, in obesity and experimental diabetes models. This review summarizes the role of NO in adipose tissue and highlights the effects of NO/О2•– ratio ‘teetering’ as a promising pharmacological target in the metabolic syndrome. Linked Articles: This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit © 2016 The British Pharmacological Society

Rassaf T.,Heinrich Heine University Düsseldorf | Ferdinandy P.,Semmelweis University | Ferdinandy P.,Pharmahungary Group | Schulz R.,Justus Liebig University
British Journal of Pharmacology | Year: 2014

In the last decade, the nitrate-nitrite-nitric oxide pathway has emerged to therapeutical importance. Modulation of endogenous nitrate and nitrite levels with the subsequent S-nitros(yl)ation of the downstream signalling cascade open the way for novel cytoprotective strategies. In the following, we summarize the actual literature and give a short overview on the potential of nitrite in organ protection. © 2013 The British Pharmacological Society.

Kadomatsu K.,Nagoya University | Bencsik P.,Pharmahungary Group | Gorbe A.,Pharmahungary Group | Gorbe A.,University of Szeged | And 6 more authors.
British Journal of Pharmacology | Year: 2014

Ischaemic heart disease, stroke and their pathological consequences are life-threatening conditions that account for about half of deaths in developed countries. Pathology of these diseases includes cell death due to ischaemia/reperfusion injury, vascular stenosis and cardiac remodelling. The growth factor midkine plays a pivotal role in these events. Midkine shows an acute cytoprotective effect in ischaemia/reperfusion injury at least in part via its anti-Apoptotic effect. Moreover, while midkine promotes endothelial cell proliferation, it also recruits inflammatory cells to lesions. These activities eventually enhance angiogenesis, thereby preventing cardiac tissue remodelling. However, midkine's activity in recruiting inflammatory cells into the vascular wall also triggers neointima formation, and consequently, vascular stenosis. Moreover, midkine is induced in cancer tissues where it enhances angiogenesis. Therefore, midkine may promote tumour formation through its angiogenic and anti-Apoptotic activity. This review focuses on the roles of midkine in ischaemic cardiovascular disease and their pathological consequences, that is angiogenesis, vascular stenosis, and cardiac remodelling, and discusses the possible therapeutic potential of modulation of midkine in these diseases. © 2013 The British Pharmacological Society.

Di Lisa F.,CNR Institute of Neuroscience | Giorgio M.,Institute of Oncology | Ferdinandy P.,Semmelweis University | Ferdinandy P.,Pharmahungary Group | Schulz R.,Justus Liebig University
British Journal of Pharmacology | Year: 2017

Although reactive oxygen species (ROS) act as crucial factors in the onset and progression of a wide array of diseases, they are also involved in numerous signalling pathways related to cell metabolism, growth and survival. ROS are produced at various cellular sites, and it is generally agreed that mitochondria generate the largest amount, especially those in cardiomyocytes. However, the identification of the most relevant sites within mitochondria, the interaction among the various sources, and the events responsible for the increase in ROS formation under pathological conditions are still highly debated, and far from being clarified. Here, we review the information linking the adaptor protein p66Shc with cardiac injury induced by ischaemia and reperfusion (I/R), including the contribution of risk factors, such as metabolic syndrome and ageing. In response to several stimuli, p66Shc migrates into mitochondria where it catalyses electron transfer from cytochrome c to oxygen resulting in hydrogen peroxide formation. Deletion of p66Shc has been shown to reduce I/R injury as well as vascular abnormalities associated with diabetes and ageing. However, p66Shc-induced ROS formation is also involved in insulin signalling and might contribute to self-endogenous defenses against mild I/R injury. In addition to its role in physiological and pathological conditions, we discuss compounds and conditions that can modulate the expression and activity of p66Shc. Linked Articles: This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit © 2016 The British Pharmacological Society

Csonka C.,University of Szeged | Csonka C.,Pharmahungary Group | Pali T.,Hungarian Academy of Sciences | Bencsik P.,University of Szeged | And 7 more authors.
British Journal of Pharmacology | Year: 2015

Although the physiological regulatory function of the gasotransmitter NO (a diatomic free radical) was discovered decades ago, NO is still in the frontline research in biomedicine. NO has been implicated in a variety of physiological and pathological processes; therefore, pharmacological modulation of NO levels in various tissues may have significant therapeutic value. NO is generated by NOS in most of cell types and by non-enzymatic reactions. Measurement of NO is technically difficult due to its rapid chemical reactions with a wide range of molecules, such as, for example, free radicals, metals, thiols, etc. Therefore, there are still several contradictory findings on the role of NO in different biological processes. In this review, we briefly discuss the major techniques suitable for measurement of NO (electron paramagnetic resonance, electrochemistry, fluorometry) and its derivatives in biological samples (nitrite/nitrate, NOS, cGMP, nitrosothiols) and discuss the advantages and disadvantages of each method. We conclude that to obtain a meaningful insight into the role of NO and NO modulator compounds in physiological or pathological processes, concomitant assessment of NO synthesis, NO content, as well as molecular targets and reaction products of NO is recommended. © 2014 The British Pharmacological Society.

Sluijter J.P.G.,University Utrecht | Sluijter J.P.G.,Netherlands Heart Institute | Condorelli G.,University of Milan | Davidson S.M.,University College London | And 11 more authors.
Pharmacology and Therapeutics | Year: 2014

The morbidity and mortality from ischemic heart disease (IHD) remain significant worldwide. The treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of occluded coronary arteries. Although it is essential to re-open the artery as soon as possible, paradoxically this leads to additional myocardial injury, called acute ischemia-reperfusion injury (IRI), for which currently no effective therapy is available. Therefore, novel therapeutic strategies are required to protect the heart from acute IRI in order to reduce myocardial infarction size, preserve cardiac function and improve clinical outcomes in patients with IHD. In this review article, we will first outline the pathophysiology of acute IRI and review promising therapeutic strategies for cardioprotection. These include novel aspects of mitochondrial function, epigenetics, circadian clocks, the immune system, microvesicles, growth factors, stem cell therapy and gene therapy. We discuss the therapeutic potential of these novel cardioprotective strategies in terms of pharmacological targeting and clinical application. © 2014 Elsevier Inc.

Hausenloy D.J.,University College London | Erik Botker H.,University of Aarhus | Condorelli G.,National Research Council Italy | Ferdinandy P.,Semmelweis University | And 12 more authors.
Cardiovascular Research | Year: 2013

Coronary heart disease (CHD) is the leading cause of death and disability worldwide. Despite current therapy, the morbidity and mortality for patients with CHD remains significant. The most important manifestations of CHD arise from acute myocardial ischaemia-reperfusion injury (IRI) in terms of cardiomyocyte death and its long-term consequences. As such, new therapeutic interventions are required to protect the heart against the detrimental effects of acute IRI and improve clinical outcomes. Although a large number of cardioprotective therapies discovered in pre-clinical studies have been investigated in CHD patients, few have been translated into the clinical setting, and a significant number of these have failed to show any benefit in terms of reduced myocardial infarction and improved clinical outcomes. Because of this, there is currently no effective therapy for protecting the heart against the detrimental effects of acute IRI in patients with CHD. One major factor for this lack of success in translating cardioprotective therapies into the clinical setting can be attributed to problems with the clinical study design. Many of these clinical studies have not taken into consideration the important data provided from previously published pre-clinical and clinical studies. The overall aim of this ESC Working Group Cellular Biology of the Heart Position Paper is to provide recommendations for optimizing the design of clinical cardioprotection studies, which should hopefully result in new and effective therapeutic interventions for the future benefit of CHD patients. © The Author 2012.

Barlaka E.,Aristotle University of Thessaloniki | Gorbe A.,University of Szeged | Gorbe A.,Pharmahungary Group | Gaspar R.,University of Szeged | And 4 more authors.
Pharmacological Research | Year: 2015

Heart failure still remains one of the leading causes of morbidity and mortality worldwide. A major contributing factor is reactive oxygen/nitrogen species (RONS) overproduction which is associated with cardiac remodeling partly through cardiomyocyte apoptosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear receptor superfamily and have been implicated in cardioprotection. However, the molecular mechanisms are largely unexplored. In this study we sought to investigate the potential beneficial effects evoked by activation of PPARβ/δ under the setting of oxidative stress induced by H2O2 in adult rat cardiac myocytes. The selective PPARβ/δ agonist GW0742 inhibited the H2O2-induced apoptosis and increased cell viability. In addition, generation of RONS was attenuated in cardiac myocytes in the presence of PPARβ/δ agonist. These effects were abolished in the presence of the PPARβ/δ antagonist indicating that the effect was through PPARβ/δ receptor activation. Treatment with PPARβ/δ agonist was also associated with attenuation of caspase-3 and PARP cleavage, upregulation of anti-apoptotic Bcl-2 and concomitant downregulation of pro-apoptotic Bax. In addition, activation of PPARβ/δ inhibited the oxidative-stress-induced MMP-2 and MMP-9 mRNA upregulation. It is concluded that PPARβ/δ activation exerts a cytoprotective effect in adult rat cardiac myocytes subjected to oxidative stress via inhibition of oxidative stress, MMP expression, and apoptosis. Our data suggest that the novel connection between PPAR signaling and MMP down-regulation in cardiac myocytes might represent a new target for the management of oxidative stress-induced cardiac dysfunction. ©2015 Elsevier Ltd. All rights reserved.

Schulz R.,Justus Liebig University | Gorge P.M.,Justus Liebig University | Gorbe A.,University of Szeged | Gorbe A.,Pharmahungary Group | And 4 more authors.
Pharmacology and Therapeutics | Year: 2015

Abstract Connexins are widely distributed proteins in the body that are crucially important for heart and brain functions. Six connexin subunits form a connexon or hemichannel in the plasma membrane. Interactions between two hemichannels in a head-to-head arrangement result in the formation of a gap junction channel. Gap junctions are necessary to coordinate cell function by passing electrical current flow between heart and nerve cells or by allowing exchange of chemical signals and energy substrates. Apart from its localization at the sarcolemma of cardiomyocytes and brain cells, connexins are also found in the mitochondria where they are involved in the regulation of mitochondrial matrix ion fluxes and respiration. Connexin expression is affected by age and gender as well as several pathophysiological alterations such as hypertension, hypertrophy, diabetes, hypercholesterolemia, ischemia, post-myocardial infarction remodeling or heart failure, and post-translationally connexins are modified by phosphorylation/de-phosphorylation and nitros(yl)ation which can modulate channel activity. Using knockout/knockin technology as well as pharmacological approaches, one of the connexins, namely connexin 43, has been identified to be important for cardiac and brain ischemia/reperfusion injuries as well as protection from it. Therefore, the current review will focus on the importance of connexin 43 for irreversible injury of heart and brain tissues following ischemia/reperfusion and will highlight the importance of connexin 43 as an emerging therapeutic target in cardio- and neuroprotection. © 2015 Elsevier Inc.

Varga Z.V.,U.S. National Institutes of Health | Varga Z.V.,Semmelweis University | Giricz Z.,Semmelweis University | Liaudet L.,University Hospitals Geneva Medical Center | And 4 more authors.
Biochimica et Biophysica Acta - Molecular Basis of Disease | Year: 2015

Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases. © 2014.

Loading Pharmahungary Group collaborators
Loading Pharmahungary Group collaborators