Pharmacogenetics Research Clinic

Toronto, Canada

Pharmacogenetics Research Clinic

Toronto, Canada
SEARCH FILTERS
Time filter
Source Type

Wallace T.J.M.,Pharmacogenetics Research Clinic | Zai C.C.,Pharmacogenetics Research Clinic | Brandl E.J.,Pharmacogenetics Research Clinic | Muller D.J.,Pharmacogenetics Research Clinic
Pharmacogenomics and Personalized Medicine | Year: 2011

Antipsychotic-induced weight gain is a serious side effect of antipsychotic medication that can lead to increased morbidity, mortality, and non-compliance in patients. Numerous single nucleotide polymorphisms have been studied for association with antipsychotic-induced weight gain in an attempt to find genetic predictors of this side effect. An ability to predict this side effect could lead to personalized treatment plans for predisposed individuals, which could significantly decrease the prevalence and severity of weight gain. Variations in the serotonin receptor 2c gene (HTR2C) have emerged as promising candidates for prediction of antipsychoticinduced weight gain. Specifically, the well-studied -759C/T promoter polymorphism has been associated with weight gain in diverse populations, although some studies have reported no association. This discrepancy is likely due to heterogeneity in study design with respect to ethnicity, treatment duration, and other variables. Notably, the association between HTR2C and antipsychotic-induced weight gain appears strongest in short-term studies on patients with limited or no previous antipsychotic treatment. Other, less extensively studied promoter polymorphisms (-697C/G, -997G/A, and -1165A/G) have also emerged as potential predictors of antipsychotic-induced weight gain. Conversely, the well-studied intronic polymorphism Cys23Ser does not appear to be associated. With further research on both HTR2C and other genetic and environmental predictors of antipsychotic-induced weight gain, a predictive test could one day be created to screen patients and provide preventative or alternative treatment for those who are predisposed to this serious side effect. © 2011 Wallace et al, publisher and licensee Dove Medical Press Ltd.


Shams T.A.,Pharmacogenetics Research Clinic | Shams T.A.,Ryerson University | Muller D.J.,Pharmacogenetics Research Clinic | Muller D.J.,University of Toronto
Current Psychiatry Reports | Year: 2014

Antipsychotic-induced weight gain (AIWG) is a prevalent side effect of antipsychotic treatment, particularly with second generation antipsychotics, such as clozapine and olanzapine. At this point, there is virtually nothing that can be done to predict who will be affected by AIWG. However, hope for the future of prediction lies with genetic risk factors. Many genes have been studied for their association with AIWG with a variety of promising findings. This review will focus on genetic findings in the last year and will discuss the first epigenetic and biomarker findings as well. Although there are significant findings in many other genes, the most consistently replicated findings are in the melanocortin 4 receptor (MC4R), the serotonin 2C receptor (HTR2C), the leptin, the neuropeptide Y (NPY) and the cannabinoid receptor 1 (CNR1) genes. The study of genetic risk variants poses great promise in creating predictive tools for side effects such as AIWG. © 2014, Springer Science+Business Media New York.


Shams T.A.,Pharmacogenetics Research Clinic | Shams T.A.,Ryerson University | Foussias G.,University of Toronto | Foussias G.,Campbell Family Mental Health Research Institute | And 12 more authors.
Current Psychiatry Reports | Year: 2015

Video games are now a ubiquitous form of entertainment that has occasionally attracted negative attention. Video games have also been used to test cognitive function, as therapeutic interventions for neuropsychiatric disorders, and to explore mechanisms of experience-dependent structural brain changes. Here, we review current research on video games published from January 2011 to April 2014 with a focus on studies relating to mental health, cognition, and brain imaging. Overall, there is evidence that specific types of video games can alter brain structure or improve certain aspects of cognitive functioning. Video games can also be useful as neuropsychological assessment tools. While research in this area is still at a very early stage, there are interesting results that encourage further work in this field, and hold promise for utilizing this technology as a powerful therapeutic and experimental tool. © 2015, Springer Science+Business Media New York.


Lett T.A.P.,Pharmacogenetics Research Clinic | Wallace T.J.M.,Pharmacogenetics Research Clinic | Chowdhury N.I.,Pharmacogenetics Research Clinic | Tiwari A.K.,Pharmacogenetics Research Clinic | And 2 more authors.
Molecular Psychiatry | Year: 2012

Second-generation antipsychotics (SGAs), such as risperidone, clozapine and olanzapine, are the most common drug treatments for schizophrenia. SGAs presented an advantage over first-generation antipsychotics (FGAs), particularly regarding avoidance of extrapyramidal symptoms. However, most SGAs, and to a lesser degree FGAs, are linked to substantial weight gain. This substantial weight gain is a leading factor in patient non-compliance and poses significant risk of diabetes, lipid abnormalities (that is, metabolic syndrome) and cardiovascular events including sudden death. The purpose of this article is to review the advances made in the field of pharmacogenetics of antipsychotic-induced weight gain (AIWG). We included all published association studies in AIWG from December 2006 to date using the Medline and ISI web of knowledge databases. There has been considerable progress reaffirming previous findings and discovery of novel genetic factors. The HTR2C and leptin genes are among the most promising, and new evidence suggests that the DRD2, TNF, SNAP-25 and MC4R genes are also prominent risk factors. Further promising findings have been reported in novel susceptibility genes, such as CNR1, MDR1, ADRA1A and INSIG2. More research is required before genetically informed, personalized medicine can be applied to antipsychotic treatment; nevertheless, inroads have been made towards assessing genetic liability and plausible clinical application. © 2012 Macmillan Publishers Limited All rights reserved.


Shams T.A.,Pharmacogenetics Research Clinic | Muller D.J.,Pharmacogenetics Research Clinic
Current psychiatry reports | Year: 2014

Antipsychotic-induced weight gain (AIWG) is a prevalent side effect of antipsychotic treatment, particularly with second generation antipsychotics, such as clozapine and olanzapine. At this point, there is virtually nothing that can be done to predict who will be affected by AIWG. However, hope for the future of prediction lies with genetic risk factors. Many genes have been studied for their association with AIWG with a variety of promising findings. This review will focus on genetic findings in the last year and will discuss the first epigenetic and biomarker findings as well. Although there are significant findings in many other genes, the most consistently replicated findings are in the melanocortin 4 receptor (MC4R), the serotonin 2C receptor (HTR2C), the leptin, the neuropeptide Y (NPY) and the cannabinoid receptor 1 (CNR1) genes. The study of genetic risk variants poses great promise in creating predictive tools for side effects such as AIWG.


Drozda K.,University of Illinois at Chicago | Muller D.J.,Pharmacogenetics Research Clinic | Bishop J.R.,University of Illinois at Chicago
Pharmacotherapy | Year: 2014

Advancements in pharmacogenomics have introduced an increasing number of opportunities to bring personalized medicine into clinical practice. Understanding how and when to use this technology to guide pharmacotherapy used to treat psychiatric and neurological (neuropsychiatric) conditions remains a challenge for many clinicians. Currently, guidelines exist to assist clinicians in the use of existing genetic information for drug selection and/or dosing for the tricyclic antidepressants, carbamazepine, and phenytoin. Additional language in the product labeling suggests that genetic information may also be useful for determining the starting and target doses, as well as drug interaction potential, for a number of other drugs. In this review, we outline the current status of pharmacogenomic testing for neuropsychiatric drugs as it pertains to information contained in drug labeling, consensus guidelines, and test panels, as well as considerations related to obtaining tests for patients. © 2013 Pharmacotherapy Publications, Inc.


Shams T.A.,Pharmacogenetics Research Clinic | Foussias G.,Pharmacogenetics Research Clinic | Zawadzki J.A.,Pharmacogenetics Research Clinic | Marshe V.S.,Pharmacogenetics Research Clinic | And 3 more authors.
Current psychiatry reports | Year: 2015

Video games are now a ubiquitous form of entertainment that has occasionally attracted negative attention. Video games have also been used to test cognitive function, as therapeutic interventions for neuropsychiatric disorders, and to explore mechanisms of experience-dependent structural brain changes. Here, we review current research on video games published from January 2011 to April 2014 with a focus on studies relating to mental health, cognition, and brain imaging. Overall, there is evidence that specific types of video games can alter brain structure or improve certain aspects of cognitive functioning. Video games can also be useful as neuropsychological assessment tools. While research in this area is still at a very early stage, there are interesting results that encourage further work in this field, and hold promise for utilizing this technology as a powerful therapeutic and experimental tool.


PubMed | Pharmacogenetics Research Clinic
Type: | Journal: Methods in molecular biology (Clifton, N.J.) | Year: 2014

Antipsychotics are the mainstay treatment for schizophrenia. There is large variability between individuals in their response to antipsychotics, both in efficacy and adverse effects of treatment. While the source of interindividual variability in antipsychotic response is not completely understood, genetics is a major contributing factor. The identification of pharmacogenetic markers that predict antipsychotic efficacy and adverse reactions is a growing area of research, and holds the potential to replace the current trial-and-error approach to treatment selection in schizophrenia with a personalized medicine approach.In this chapter, we provide an overview of the current state of pharmacogenetics in schizophrenia treatment. The most promising pharmacogenetic findings are presented for both antipsychotic response and commonly studied adverse reactions. The application of pharmacogenetics to schizophrenia treatment is discussed, with an emphasis on the clinical utility of pharmacogenetic testing and directions for future research.


PubMed | Pharmacogenetics Research Clinic
Type: Journal Article | Journal: Current psychiatry reports | Year: 2014

Antipsychotic-induced weight gain (AIWG) is a prevalent side effect of antipsychotic treatment, particularly with second generation antipsychotics, such as clozapine and olanzapine. At this point, there is virtually nothing that can be done to predict who will be affected by AIWG. However, hope for the future of prediction lies with genetic risk factors. Many genes have been studied for their association with AIWG with a variety of promising findings. This review will focus on genetic findings in the last year and will discuss the first epigenetic and biomarker findings as well. Although there are significant findings in many other genes, the most consistently replicated findings are in the melanocortin 4 receptor (MC4R), the serotonin 2C receptor (HTR2C), the leptin, the neuropeptide Y (NPY) and the cannabinoid receptor 1 (CNR1) genes. The study of genetic risk variants poses great promise in creating predictive tools for side effects such as AIWG.


PubMed | Pharmacogenetics Research Clinic
Type: Journal Article | Journal: Current psychiatry reports | Year: 2015

Video games are now a ubiquitous form of entertainment that has occasionally attracted negative attention. Video games have also been used to test cognitive function, as therapeutic interventions for neuropsychiatric disorders, and to explore mechanisms of experience-dependent structural brain changes. Here, we review current research on video games published from January 2011 to April 2014 with a focus on studies relating to mental health, cognition, and brain imaging. Overall, there is evidence that specific types of video games can alter brain structure or improve certain aspects of cognitive functioning. Video games can also be useful as neuropsychological assessment tools. While research in this area is still at a very early stage, there are interesting results that encourage further work in this field, and hold promise for utilizing this technology as a powerful therapeutic and experimental tool.

Loading Pharmacogenetics Research Clinic collaborators
Loading Pharmacogenetics Research Clinic collaborators