Peter Duncan Neurosciences Research Unit

Sydney, Australia

Peter Duncan Neurosciences Research Unit

Sydney, Australia
SEARCH FILTERS
Time filter
Source Type

Lennon M.J.,Peter Duncan Neurosciences Research Unit | Lennon M.J.,University of New South Wales | Jones S.P.,Peter Duncan Neurosciences Research Unit | Jones S.P.,University of New South Wales | And 6 more authors.
Neurotoxicity Research | Year: 2016

Amyotrophic lateral sclerosis (ALS) is an idiopathic, fatal, neurodegenerative disease of the human motor system. The pathogenesis of ALS is a topic of fascinating speculation and experimentation, with theories revolving around intracellular protein inclusions, mitochondrial structural issues, glutamate excitotoxicity and free radical formation. This review explores the rationale for the involvement of a novel protein, B-cell lymphoma/leukaemia 11b (Bcl11b) in ALS. Bcl11b is a multifunctional zinc finger protein transcription factor. It functions as both a transactivator and genetic suppressor, acting both directly, binding to promoter regions, and indirectly, binding to promoter-bound transcription factors. It has essential roles in the differentiation and growth of various cells in the central nervous system, immune system, integumentary system and cardiovascular system, to the extent that Bcl11b knockout mice are incompatible with extra-uterine life. It also has various roles in pathology including the suppression of latent retroviruses, thymic tumourigenesis and neurodegeneration. In particular its functions in neurodevelopment, viral latency and T-cell development suggest potential roles in ALS pathology. © 2015, Springer Science+Business Media New York.


Lovelace M.D.,Peter Duncan Neurosciences Research Unit | Lovelace M.D.,University of Sydney | Varney B.,Peter Duncan Neurosciences Research Unit | Sundaram G.,Peter Duncan Neurosciences Research Unit | And 7 more authors.
Neuropharmacology | Year: 2017

The kynurenine pathway (KP) of tryptophan metabolism has emerged in recent years as a key regulator of the production of both neuroprotective (e.g. kynurenic and picolinic acid, and the essential cofactor NAD+) and neurotoxic metabolites (e.g. quinolinic acid, 3-hydroxykynurenine). The balance between the production of the two types of metabolites is controlled by key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO-1), and in turn, molecular signals such as interferon-γ (IFN-γ), which activate the KP metabolism of tryptophan by this enzyme, as opposed to alternative pathways for serotonin and melatonin production. Dysregulated KP metabolism has been strongly associated with neurological diseases in recent years, and is the subject of increasing efforts to understand how the metabolites are causative of disease pathology. Concurrent with these endeavours are drug development initiatives to use inhibitors to block certain enzymes in the pathway, resulting in reduced levels of neurotoxic metabolites (e.g. quinolinic acid, an excitotoxin and N-Methyl-D-Aspartate (NMDA) receptor agonist), while in turn enhancing the bioavailability of the neuroprotective metabolites such as kynurenic acid. Neurodegenerative diseases often have a substantial autoimmune or inflammatory component; hence a greater understanding of how KP metabolites influence the inflammatory cascade is required. Additionally, challenges exist in diseases like multiple sclerosis (MS) and motor neurone disease (MND), which do not have reliable biomarkers. Clinical diagnosis can often be prolonged in order to exclude other diseases, and often diagnosis occurs at an advanced state of disease pathology, which does not allow a lengthy time for patient assessment and intervention therapies. This review considers the current evidence for involvement of the KP in several neurological diseases, in biomarkers of disease and also the parallels that exist in KP metabolism with what is known in other diseases such as HIV, Alzheimer's disease/dementia, infection, immune privilege and cardiovascular disease. This article is part of the Special Issue entitled ‘The Kynurenine Pathway in Health and Disease’. © 2016


Lim C.K.,Macquarie University | Fernandez-Gomez F.J.,University of Murcia | Braidy N.,University of New South Wales | Estrada C.,University of Murcia | And 9 more authors.
Progress in Neurobiology | Year: 2017

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by loss of dopaminergic neurons and localized neuroinflammation occurring in the midbrain several years before the actual onset of symptoms. Neuroinflammation leads to microglia activation and release of a large number of proinflammatory mediators. The kynurenine pathway (KP) of tryptophan catabolism is one of the major regulators of the immune response and is also likely to be implicated in the inflammatory and neurotoxic events in Parkinsonism. Several neuroactive compounds are produced through the KP that can be either a neurotoxic, neuroprotective or immunomodulator. Among these metabolites kynurenic acid (KYNA), produced by astrocytes, is considered as neuroprotective whereas quinolinic acid (QUIN), released by activated microglia, can activate the N-methyl-D-aspartate (NMDA) receptor-signalling pathway, leading to excitotoxicity and amplify the inflammatory response. Previous studies have shown that NMDA antagonists can ease symptoms and exert a neuroprotective effect in PD both in vivo and in vitro. There are to date several lines of evidence linking some of the KP intermediates and the neuropathogenesis of PD. Moreover, it is likely that some of the KP metabolites could be used as prognostic biomarkers and that pharmacological modulators of the KP enzymes could represent a new therapeutic strategy for PD. © 2016 Elsevier Ltd


Lennon M.J.,Peter Duncan Neurosciences Research Unit | Lennon M.J.,University of New South Wales | Jones S.P.,Peter Duncan Neurosciences Research Unit | Jones S.P.,University of New South Wales | And 6 more authors.
Frontiers in Cellular Neuroscience | Year: 2017

B cell leukemia 11b (Bcl11b) is a zinc finger protein transcription factor with a multiplicity of functions. It works as both a genetic suppressor and activator, acting directly, attaching to promoter regions, as well as indirectly, attaching to promoter-bound transcription factors. Bcl11b is a fundamental transcription factor in fetal development, with important roles for the differentiation and development of various neuronal subtypes in the central nervous system (CNS). It has been used as a specific marker of layer V subcerebral projection neurons as well as striatal interneurons. Bcl11b also has critical developmental functions in the immune, integumentary and cardiac systems, to the extent that Bcl11b knockout mice are incompatible with extra-uterine life. Bcl11b has been implicated in a number of disease states including Huntington’s disease, Alzheimer’s disease, HIV and T-Cell malignancy, amongst others. Bcl11b is a fascinating protein whose critical roles in the CNS and other parts of the body are yet to be fully explicated. This review summarizes the current literature on Bcl11b and its functions in development, health, and disease as well as future directions for research. © 2017 Lennon, Jones, Lovelace, Guillemin and Brew.


Jones S.P.,Peter Duncan Neurosciences Research Unit | Jones S.P.,University of New South Wales | Franco N.F.,Peter Duncan Neurosciences Research Unit | Varney B.,Peter Duncan Neurosciences Research Unit | And 10 more authors.
PLoS ONE | Year: 2015

The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes. © 2015 Jones et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


PubMed | Macquarie University and Peter Duncan Neurosciences Research Unit
Type: Journal Article | Journal: Neurotoxicity research | Year: 2016

Amyotrophic lateral sclerosis (ALS) is an idiopathic, fatal, neurodegenerative disease of the human motor system. The pathogenesis of ALS is a topic of fascinating speculation and experimentation, with theories revolving around intracellular protein inclusions, mitochondrial structural issues, glutamate excitotoxicity and free radical formation. This review explores the rationale for the involvement of a novel protein, B-cell lymphoma/leukaemia 11b (Bcl11b) in ALS. Bcl11b is a multifunctional zinc finger protein transcription factor. It functions as both a transactivator and genetic suppressor, acting both directly, binding to promoter regions, and indirectly, binding to promoter-bound transcription factors. It has essential roles in the differentiation and growth of various cells in the central nervous system, immune system, integumentary system and cardiovascular system, to the extent that Bcl11b knockout mice are incompatible with extra-uterine life. It also has various roles in pathology including the suppression of latent retroviruses, thymic tumourigenesis and neurodegeneration. In particular its functions in neurodevelopment, viral latency and T-cell development suggest potential roles in ALS pathology.


PubMed | Macquarie University and Peter Duncan Neurosciences Research Unit
Type: Journal Article | Journal: PloS one | Year: 2015

The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes.


PubMed | Macquarie University, University of Liverpool, Peter Duncan Neurosciences Research Unit and Xavier University School of Medicine
Type: Review | Journal: Neuropharmacology | Year: 2016

The kynurenine pathway (KP) of tryptophan metabolism has emerged in recent years as a key regulator of the production of both neuroprotective (e.g. kynurenic and picolinic acid, and the essential cofactor NAD+) and neurotoxic metabolites (e.g. quinolinic acid, 3-hydroxykynurenine). The balance between the production of the two types of metabolites is controlled by key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO-1), and in turn, molecular signals such as interferon- (IFN-), which activate the KP metabolism of tryptophan by this enzyme, as opposed to alternative pathways for serotonin and melatonin production. Dysregulated KP metabolism has been strongly associated with neurological diseases in recent years, and is the subject of increasing efforts to understand how the metabolites are causative of disease pathology. Concurrent with these endeavours are drug development initiatives to use inhibitors to block certain enzymes in the pathway, resulting in reduced levels of neurotoxic metabolites (e.g. quinolinic acid, an excitotoxin and N-Methyl-d-Aspartate (NMDA) receptor agonist), while in turn enhancing the bioavailability of the neuroprotective metabolites such as kynurenic acid. Neurodegenerative diseases often have a substantial autoimmune or inflammatory component; hence a greater understanding of how KP metabolites influence the inflammatory cascade is required. Additionally, challenges exist in diseases like multiple sclerosis (MS) and motor neurone disease (MND), which do not have reliable biomarkers. Clinical diagnosis can often be prolonged in order to exclude other diseases, and often diagnosis occurs at an advanced state of disease pathology, which does not allow a lengthy time for patient assessment and intervention therapies. This review considers the current evidence for involvement of the KP in several neurological diseases, in biomarkers of disease and also the parallels that exist in KP metabolism with what is known in other diseases such as HIV, Alzheimers disease/dementia, infection, immune privilege and cardiovascular disease. This article is part of the Special Issue entitled The Kynurenine Pathway in Health and Disease.


PubMed | Monash University, Macquarie University, Peter Duncan Neurosciences Research Unit, Hospital Queen Elizabeth and 3 more.
Type: | Journal: Journal of neuroinflammation | Year: 2015

During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims. Acute QUIN levels were further correlated with outcome scores to explore its prognostic value in TBI recovery.Twenty-eight patients with severe TBI (GCS 8, three patients had initial GCS = 9-10, but rapidly deteriorated to 8) were recruited. CSF was collected from admission to day 5 post-injury. TRP, kynurenine (KYN), kynurenic acid (KYNA), QUIN, anthranilic acid (AA) and 3-hydroxyanthranilic acid (3HAA) were measured in CSF. The Glasgow Outcome Scale Extended (GOSE) score was assessed at 6 months post-TBI. Post-mortem brains were obtained from the Australian Neurotrauma Tissue and Fluid Bank and used in qPCR for quantitating expression of KP enzymes (indoleamine 2,3-dioxygenase-1 (IDO1), kynurenase (KYNase), kynurenine amino transferase-II (KAT-II), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyl transferase (QPRTase) and IDO1 immunohistochemistry.In CSF, KYN, KYNA and QUIN were elevated whereas TRP, AA and 3HAA remained unchanged. The ratios of QUIN:KYN, QUIN:KYNA, KYNA:KYN and 3HAA:AA revealed that QUIN levels were significantly higher than KYN and KYNA, supporting increased neurotoxicity. Amplified IDO1 and KYNase mRNA expression was demonstrated on post-mortem brains, and enhanced IDO1 protein coincided with overt tissue damage. QUIN levels in CSF were significantly higher in patients with unfavourable outcome and inversely correlated with GOSE scores.TBI induced a striking activation of the KP pathway with sustained increase of QUIN. The exceeding production of QUIN together with increased IDO1 activation and mRNA expression in brain-injured areas suggests that TBI selectively induces a robust stimulation of the neurotoxic branch of the KP pathway. QUINs detrimental roles are supported by its association to adverse outcome potentially becoming an early prognostic factor post-TBI.


PubMed | University of New South Wales and Peter Duncan Neurosciences Research Unit
Type: | Journal: Journal of neuroinflammation | Year: 2015

The excitotoxin quinolinic acid, a by-product of the kynurenine pathway, is known to be involved in several neurological diseases including multiple sclerosis (MS). Quinolinic acid levels are elevated in experimental autoimmune encephalomyelitis rodents, the widely used animal model of MS. Our group has also found pathophysiological concentrations of quinolinic acid in MS patients. This led us to investigate the effect of quinolinic acid on oligodendrocytes; the main cell type targeted by the autoimmune response in MS. We have examined the kynurenine pathway (KP) profile of two oligodendrocyte cell lines and show that these cells have a limited threshold to catabolize exogenous quinolinic acid. We further propose and demonstrate two strategies to limit quinolinic acid gliotoxicity: 1) by neutralizing quinolinic acids effects with anti-quinolinic acid monoclonal antibodies and 2) directly inhibiting quinolinic acid production from activated monocytic cells using specific KP enzyme inhibitors. The outcome of this study provides a new insight into therapeutic strategies for limiting quinolinic acid-induced neurodegeneration, especially in neurological disorders that target oligodendrocytes, such as MS.

Loading Peter Duncan Neurosciences Research Unit collaborators
Loading Peter Duncan Neurosciences Research Unit collaborators