Permelec Electrode Ltd.

Fujisawa, Japan

Permelec Electrode Ltd.

Fujisawa, Japan
SEARCH FILTERS
Time filter
Source Type

Patent
Permelec Electrode Ltd., Kaneka Corporation, Toagosei Co. and Chlorine Engineers Corporation | Date: 2013-01-02

The current invention is to provide an oxygen gas diffusion cathode for brine electrolysis which reduces an initial electrolysis voltage and is excellent in the durability against short-circuit, and an electrolytic cell and an electrolytic method using the same. The oxygen gas diffusion cathode for brine electrolysis includes a gas diffusion layer 13 and a reaction layer 14 on one surface of an electro-conductive substrate 12, and an electro-conductive layer 15 on the opposite surface thereof. The present oxygen gas diffusion cathode reduces the resistance of the electro-conductive substrate 12 and supplies uniform current by mounting the electro-conductive layer 15.


Patent
Aichi Gakuin University and Permelec Electrode Ltd. | Date: 2015-06-17

A method for treating an implant material having excellent biocompatibility, particularly, a method and an apparatus for treating a dental implant material. A method and an apparatus for treating an implant material having excellent biocompatibility, in which a surface-roughened implant material containing titanium and a titanium alloy is immersed in electrolyzed ozone water, and the electrolyzed ozone water is held at normal temperature, thereby preventing contamination due to adsorption of carbide on the surface of the implant material and imparting hydrophilicity.


Patent
Permelec Electrode Ltd. and Japan Atomic Energy Agency | Date: 2014-04-18

The present invention provides a membrane-electrode assembly which includes: at least one rod-form or tubular electrode; a tubular diaphragm disposed around the periphery of the electrode; and a wire-form counter electrode disposed around the periphery of the diaphragm, the diaphragm being fixed to the rod-form or tubular electrode with the wire-form counter electrode to thereby form an electrode chamber having a gas/liquid passage between the diaphragm and the rod-form or tubular electrode.


Patent
Permelec Electrode Ltd. | Date: 2012-11-01

The present invention provides an electrode for electrochemistry with a high quality, in which the surface area of the polycrystalline conductive diamond layer is increased and the crystal plane is controlled. In addition, when the catalyst layer of electrode substance is coated on the polycrystalline conductive diamond layer, adherence between the two layers is increased to provide an electrode for electrochemistry with a high durability. The polycrystalline conductive diamond layer is held under an atmosphere of carbon dioxide at a temperature 400 degrees Celsius or higher but 1000 degrees Celsius or lower to make the polycrystalline conductive diamond layer porous and make a specific crystal plane to remain and be formed.


The present invention provides an electrode for electrolysis, wherein the electrode comprises: a substrate comprising an electrically conductive material, wherein the surface of the substrate is made of glassy carbon; and an electrically conductive diamond film with which at least part of the substrate is coated.


An electrolysis method and a device therefor, which achieve a stable continuous operation and prevent the influence of scale that can deposit within the system over time, are provided for an electrolysis system that carries out the electrolysis of white liquor used in a cooking step in a kraft pulp method, which is a pulp production method, in order to electrolytically produce polysulfide through oxidation of sodium sulfide in the white liquor. The electrolysis method of preventing the voltage of an electrolytic bath from rising over time without halting electrolysis and the electrolysis device for executing the method implement are provided such that: in operation of a two-compartment electrolytic bath, which has a membrane partitioning an anode compartment from a cathode compartment and in which a sulfide ion-containing white liquor for use in a pulp production process is fed into the anode compartment while direct current is supplied to the electrolytic bath to produce polysulfide in the anode compartment through electrolysis, and a sulfide ion-containing white liquor for use in a pulp production process that contains at least one of a scale cleaning agent and a scale inhibitor is fed to the anode compartment.


Patent
Permelec Electrode Ltd. | Date: 2014-09-04

The present invention provides a method for manufacturing an electrolytic electrode, the method capable of appropriately controlling the amount of an electrode catalyst component as desired and also capable of manufacturing a high-performance electrolytic electrode in a cost-effective and efficient way without affecting the electrode performance. A method for manufacturing an electrolytic electrode including a step of forming an electrode catalyst layer on each of a front and a back of a conductive electrode substrate, by applying a coating solution containing a starting material for the electrode catalyst component on the front of the conductive electrode substrate with a plurality of holes, the conductive electrode substrate being expanded mesh or the like, and thereafter drying and firing the coating solution, wherein the substrate contains at least one metal selected from the group consisting of Ti, Ta, Nb, Zr, Hf, and Ni, and alloys thereof, the electrode catalyst component contains at least one selected from the group consisting of Pt, Ir, Ru, Pd, Os, and oxides thereof, and an amount of the electrode catalyst component adhering to the back of the substrate is controlled by preheating the substrate to a temperature higher than room temperature at least once before the coating solution is applied and/or by presetting the temperature to which the substrate is preheated in the electrode catalyst layer-forming step.


Patent
Permelec Electrode Ltd. | Date: 2015-09-09

The present invention provides a method for manufacturing an electrolytic electrode, the method capable of appropriately controlling the amount of an electrode catalyst component as desired and also capable of manufacturing a high-performance electrolytic electrode in a cost-effective and efficient way without affecting the electrode performance. A method for manufacturing an electrolytic electrode including a step of forming an electrode catalyst layer on each of a front and a back of a conductive electrode substrate, by applying a coating solution containing a starting material for the electrode catalyst component on the front of the conductive electrode substrate with a plurality of holes, the conductive electrode substrate being expanded mesh or the like, and thereafter drying and firing the coating solution, wherein the substrate contains at least one metal selected from the group consisting of Ti, Ta, Nb, Zr, Hf, and Ni, and alloys thereof, the electrode catalyst component contains at least one selected from the group consisting of Pt, Ir, Ru, Pd, Os, and oxides thereof, and an amount of the electrode catalyst component adhering to the back of the substrate is controlled by preheating the substrate to a temperature higher than room temperature at least once before the coating solution is applied and/or by presetting the temperature to which the substrate is preheated in the electrode catalyst layer-forming step.


Patent
Permelec Electrode Ltd., CHLORINE ENGINEERS Corporation and ThyssenKrupp | Date: 2014-10-29

An anode for alkaline water electrolysis includes a conductive substrate having at least a surface made of nickel or a nickel-base alloy and a lithium-containing nickel oxide catalytic layer formed on a surface of the substrate. The molar ratio (Li/Ni) of lithium and nickel in the catalytic layer is in the range of 0.005 to 0.15.


Patent
Permelec Electrode Ltd. | Date: 2015-04-08

A method of decomposing a fluorinated organic compound involves irradiating a target fluorinated organic compound with light in the presence of electrolyzed sulfuric acid. In detail, the inventive method involves adding electrolyzed sulfuric acid prepared by electrolysis of an aqueous sulfuric acid solution at an anode to a solution containing the target fluorinated organic compound and irradiating the solution with light to decompose the fluorinated organic compound into fluoride ions and carbon dioxide. The method can decompose fluorinated organic compounds at reduced decomposition energy, without high-temperature incineration that has been conventionally required. An apparatus for decomposing a fluorinated organic compound is also provided that is utilizable in practicing the method.

Loading Permelec Electrode Ltd. collaborators
Loading Permelec Electrode Ltd. collaborators