Entity

Time filter

Source Type

London, United Kingdom

Eaton M.A.,The Center for Conservation Science | Burns F.,The Center for Conservation Science | Isaac N.J.B.,UK Center for Ecology and Hydrology | Gregory R.D.,The Center for Conservation Science | And 12 more authors.
Biodiversity | Year: 2015

We describe the development of two complementary priority species indicators (PSIs) to help the UK to report progress towards Aichi target 12 on the status of known threatened species. Based on species identified as national conservation priorities, the indicators present average changes in (i) 213 species for which trends in relative abundance are available from structured monitoring schemes, and (ii) 179 species for which trends in frequency of occurrence were modelled from data sets of unstructured biological records. Both indicators show substantial declines in priority species since 1970, of 67% and 40%, respectively, although the rate of decline in the relative abundance-based PSI may have lessened over the last five years (2007–2012). We discuss the biases and weaknesses of the indicators at present, and put forward suggestions as how these may be addressed, including through the development of a third PSI. © 2015 Biodiversity Conservancy International. Source


Thackeray S.J.,UK Center for Ecology and Hydrology | Sparks T.H.,University of Life Sciences in Poznan | Frederiksen M.,University of Aarhus | Frederiksen M.,UK Center for Ecology and Hydrology | And 22 more authors.
Global Change Biology | Year: 2010

Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardized approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardized assessment of 25532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services. © 2010 Blackwell Publishing Ltd. Source


Eaton M.A.,The Center for Conservation Science | Burns F.,The Center for Conservation Science | Isaac N.J.B.,UK Center for Ecology and Hydrology | Gregory R.D.,The Center for Conservation Science | And 11 more authors.
Biodiversity | Year: 2015

We describe the development of two complementary priority species indicators (PSIs) to help the UK to report progress towards Aichi target 12 on the status of known threatened species. Based on species identified as national conservation priorities, the indicators present average changes in (i) 213 species for which trends in relative abundance are available from structured monitoring schemes, and (ii) 179 species for which trends in frequency of occurrence were modelled from data sets of unstructured biological records. Both indicators show substantial declines in priority species since 1970, of 67% and 40%, respectively, although the rate of decline in the relative abundance-based PSI may have lessened over the last five years (2007–2012). We discuss the biases and weaknesses of the indicators at present, and put forward suggestions as how these may be addressed, including through the development of a third PSI. © 2015 Biodiversity Conservancy International Source


Pocock M.J.O.,UK Center for Ecology and Hydrology | Newson S.E.,British Trust for Ornithology | Henderson I.G.,British Trust for Ornithology | Peyton J.,UK Center for Ecology and Hydrology | And 31 more authors.
Journal of Applied Ecology | Year: 2015

Biodiversity is changing at unprecedented rates, and it is increasingly important that these changes are quantified through monitoring programmes. Previous recommendations for developing or enhancing these programmes focus either on the end goals, that is the intended use of the data, or on how these goals are achieved, for example through volunteer involvement in citizen science, but not both. These recommendations are rarely prioritized. We used a collaborative approach, involving 52 experts in biodiversity monitoring in the UK, to develop a list of attributes of relevance to any biodiversity monitoring programme and to order these attributes by their priority. We also ranked the attributes according to their importance in monitoring biodiversity in the UK. Experts involved included data users, funders, programme organizers and participants in data collection. They covered expertise in a wide range of taxa. We developed a final list of 25 attributes of biodiversity monitoring schemes, ordered from the most elemental (those essential for monitoring schemes; e.g. articulate the objectives and gain sufficient participants) to the most aspirational (e.g. electronic data capture in the field, reporting change annually). This ordered list is a practical framework which can be used to support the development of monitoring programmes. People's ranking of attributes revealed a difference between those who considered attributes with benefits to end users to be most important (e.g. people from governmental organizations) and those who considered attributes with greatest benefit to participants to be most important (e.g. people involved with volunteer biological recording schemes). This reveals a distinction between focussing on aims and the pragmatism in achieving those aims. Synthesis and applications. The ordered list of attributes developed in this study will assist in prioritizing resources to develop biodiversity monitoring programmes (including citizen science). The potential conflict between end users of data and participants in data collection that we discovered should be addressed by involving the diversity of stakeholders at all stages of programme development. This will maximize the chance of successfully achieving the goals of biodiversity monitoring programmes. The ordered list of attributes developed in this study will assist in prioritizing resources to develop biodiversity monitoring programmes (including citizen science). The potential conflict between end users of data and participants in data collection that we discovered should be addressed by involving the diversity of stakeholders at all stages of programme development. This will maximize the chance of successfully achieving the goals of biodiversity monitoring programmes. © 2015 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Source


Burns F.,Center for Conservation Science | Eaton M.A.,Center for Conservation Science | Barlow K.E.,Bat Conservation Trust | Beckmann B.C.,UK Center for Ecology and Hydrology | And 15 more authors.
PLoS ONE | Year: 2016

Action to reduce anthropogenic impact on the environment and species within it will be most effective when targeted towards activities that have the greatest impact on biodiversity. To do this effectively we need to better understand the relative importance of different activities and how they drive changes in species' populations. Here, we present a novel, flexible framework that reviews evidence for the relative importance of these drivers of change and uses it to explain recent alterations in species' populations. We review drivers of change across four hundred species sampled from a broad range of taxonomic groups in the UK. We found that species' population change (∼1970-2012) has been most strongly impacted by intensive management of agricultural land and by climatic change. The impact of the former was primarily deleterious, whereas the impact of climatic change to date has been more mixed. Findings were similar across the three major taxonomic groups assessed (insects, vascular plants and vertebrates). In general, the way a habitat was managed had a greater impact than changes in its extent, which accords with the relatively small changes in the areas occupied by different habitats during our study period, compared to substantial changes in habitat management. Of the drivers classified as conservation measures, lowintensity management of agricultural land and habitat creation had the greatest impact. Our framework could be used to assess the relative importance of drivers at a range of scales to better inform our policy and management decisions. Furthermore, by scoring the quality of evidence, this framework helps us identify research gaps and needs. © 2016 Burns et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Discover hidden collaborations