Tangshan, China
Tangshan, China

Time filter

Source Type

Wang C.,Tongji University | Chang J.-F.,Tongji University | Yan H.,Shanghai University | Wang D.-L.,Tsinghua University | And 9 more authors.
Oncotarget | Year: 2015

Chromatin is a highly organized and dynamic structure in eukaryotic cells. The change of chromatin structure is essential in many cellular processes, such as gene transcription, DNA damage repair and others. Anti-silencing function 1 (ASF1) is a histone chaperone that participates in chromatin higher-order organization and is required for appropriate chromatin assembly. In this study, we identified the E2 ubiquitin-conjugating enzyme RAD6 as an evolutionary conserved interacting protein of ASF1 in D. melanogaster and H. sapiens that promotes the turnover of ASF1A by cooperating with a well-known E3 ligase, MDM2, via ubiquitin-proteasome pathway in H. sapiens. Further functional analyses indicated that the interplay between RAD6 and ASF1A associates with tumorigenesis. Together, these data suggest that the RAD6-MDM2 ubiquitin ligase machinery is critical for the degradation of chromatin-related proteins.


Wu Y.,Tongji University | Chen P.,Tongji University | Jing Y.,Tongji University | Wang C.,Tongji University | And 14 more authors.
PLoS ONE | Year: 2015

Histone H2B monoubiquitination is a key histone modification that has significant effects on chromatin higher-order structure and gene transcription. Multiple biological processes have been suggested to be tightly related to the dynamics of H2B monoubiquitination. However, a comprehensive understanding of biological roles of H2B monoubiquitination is still poorly understood. In the present study, we developed an efficient tool to disrupt endogenous H2B monoubiquitination levels by using an H2BK120R mutant construct expressed in human cells. Genome-wide microarray analysis of these cells revealed a potential global view of biological functions of H2B monoubiquitination. Bioinformatics analysis of our data demonstrated that while H2B monoubiquitination expectedly affected a number of previously reported biological pathways, we also uncovered the influence of this histone modification on many novel biological processes. Therefore, our work provided valuable information for understanding the role of H2B monoubiquitination and indicated potential directions for its further studies. Copyright: © 2015 Wu et al.

Loading Peoples Hospital of Zunhua collaborators
Loading Peoples Hospital of Zunhua collaborators