Welfare, Taiwan
Welfare, Taiwan

Time filter

Source Type

Chang K.-C.,China Medical University at Taichung | Hsu C.-C.,China Medical University at Taichung | Liu S.-H.,National Taiwan University | Su C.-C.,Changhua Christian Hospital | And 10 more authors.
PLoS ONE | Year: 2013

Cadmium (Cd), one of well-known highly toxic environmental and industrial pollutants, causes a number of adverse health effects and diseases in humans. The growing epidemiological studies have suggested a possible link between Cd exposure and diabetes mellitus (DM). However, the toxicological effects and underlying mechanisms of Cd-induced pancreatic β-cell injury are still unknown. In this study, we found that Cd significantly decreased cell viability, and increased sub-G1 hypodiploid cells and annexin V-Cy3 binding in pancreatic β-cell-derived RIN-m5F cells. Cd also increased intracellular reactive oxygen species (ROS) generation and malondialdehyde (MDA) production and induced mitochondrial dysfunction (the loss of mitochondrial membrane potential (MMP) and the increase of cytosolic cytochrome c release), the decreased Bcl-2 expression, increased p53 expression, poly (ADP-ribose) polymerase (PARP) cleavage, and caspase cascades, which accompanied with intracellular Cd accumulation. Pretreatment with the antioxidant N-acetylcysteine (NAC) effectively reversed these Cd-induced events. Furthermore, exposure to Cd induced the phosphorylations of c-jun N-terminal kinases (JNK), extracellular signal-regulated kinases (ERK)1/2, and p38-mitogen-activated protein kinase (MAPK), which was prevented by NAC. Additionally, the specific JNK inhibitor SP600125 or JNK-specific small interference RNA (si-RNA) transfection suppressed Cd-induced β-cell apoptosis and related signals, but not ERK1/2 and p38-MAPK inhibitors (PD98059 and SB203580) did not. However, the JNK inhibitor or JNK-specific si-RNA did not suppress ROS generation in Cd-treated cells. These results indicate that Cd induces pancreatic β-cell death via an oxidative stress downstream-mediated JNK activation-triggered mitochondria-regulated apoptotic pathway. © 2013 Chang et al.


Lin Y.-H.,China Medical University at Taichung | Lin Y.-H.,Peng Hu Hospital | Lin K.-P.,Chung Yuan Christian University | Huang S.-M.,China Medical University at Taichung | And 4 more authors.
Journal of X-Ray Science and Technology | Year: 2015

Purpose: Segmentation of the left ventricle (LV) in cardiac CT (CCT) images is difficult due to the intensity heterogeneity arising from accumulation of contrast agent in papillary muscle and trabeculae carneae. In this study, we demonstrated the random walks method for LV segmentation in CCT through cardiac phases. METHODS: 63 CCT data sets from 7 patients with 9 cardiac phases were included in this study. All cardiac CT examinations were performed with GE 64-detector CT scanner with ECG gating. In each patient, 60-80 ml iohexol was injected at a flow rate of 5 ml/sec followed by 60 ml normal saline solution. Random walks (RW) based on probability of labels was used for LV segmentation. The LV delineations generated by the experienced physician (MD), conventional image-based method (IB), and RW were compared. RESULTS: In general the contours segment the LV closely by RW and MD, but the discrepancies in papillary muscle and trabeculae carneae were observed while using the IB method. CONCLUSION: We showed the RW method potentially improved LV segmentation as compared to the volume by conventional IB method. In this study, we demonstrated the clinical feasibility of LV volume segmentation using random walks algorithm. © 2015 - IOS Press and the authors. All rights reserved.


Lin Y.-H.,Peng Hu Hospital | Lin Y.-H.,China Medical University at Taichung | Huang Y.-H.,I - Shou University | Lin K.-P.,Chung Yuan Christian University | And 3 more authors.
Journal of X-Ray Science and Technology | Year: 2014

Ventricular hemodynamics plays an important role in assessing cardiac function in clinical practice. The aim of this study was to determine the ventricular hemodynamics based on contrast movement in the left ventricle (LV) between the phases in a cardiac cycle recorded using an electrocardiography (ECG) with cardiac computed tomography (CT) and optical flow method. Cardiac CT data were acquired at 120 kV and 280 mA with a 350 ms gantry rotation, which covered one cardiac cycle, on the 640-slice CT scanner with ECG for a selected patient without heart disease. Ventricular hemodynamics (mm/phase) were calculated using the optical flow method based on contrast changes with ECG phases in anterior-posterior, lateral and superior-inferior directions. Local hemodynamic information of the LV with color coating was presented. The visualization of the functional information made the hemodynamic observation easy. © 2014 - IOS Press and the authors. All rights reserved.


Lin Y.-H.,Peng Hu Hospital | Huang S.-M.,China Medical University at Taichung | Huang C.-Y.,Peng Hu Hospital | Tu Y.-N.,Peng Hu Hospital | And 2 more authors.
PLoS ONE | Year: 2014

Objectives: Respiration-induced motion in the liver causes potential errors on the measurement of contrast medium in abdominal artery from multiphase hepatic CT scans. In this study, we investigated the use of hepatic CT images to quantitatively estimate the abdominal artery motion due to respiration by optical flow method. Copyright:Materials and Methods: A total of 132 consecutive patients were included in our patient cohort. We apply the optical flow method to compute the motion of the abdominal artery due to respiration.Results: The minimum and maximum displacement of the abdominal artery motion were 0.02 and 30.87 mm by manual delineation, 0.03 and 40.75 mm calculated by optical flow method, respectively. Both high consistency and correlation between the present method and the physicians' manual delineations were acquired with the regression equation of movement, y50.81x+0.25, r50.95, p>0.001.Conclusion: We estimated the motion of abdominal artery due to respiration using the optical flow method in multiphase hepatic CT scans and the motion estimations were validated with the visualization of physicians. The quantitative analysis of respiration-related movement of abdominal artery could be used for motion correction in the measurement of contrast medium passing though abdominal artery in multiphase CT liver scans. © 2014 Lin et al.

Loading Peng Hu Hospital collaborators
Loading Peng Hu Hospital collaborators