Santa Clara, CA, United States
Santa Clara, CA, United States
SEARCH FILTERS
Time filter
Source Type

Systems and methods for implementing array camera configurations that include a plurality of constituent array cameras, where each constituent array camera provides a distinct field of view and/or a distinct viewing direction, are described. In several embodiments, image data captured by the constituent array cameras is used to synthesize multiple images that are subsequently blended. In a number of embodiments, the blended images include a foveated region. In certain embodiments, the blended images possess a wider field of view than the fields of view of the multiple images.


Systems and methods for the generating compressed light field representation data using captured light fields in accordance embodiments of the invention are disclosed. In one embodiment, an array camera includes a processor and a memory connected configured to store an image processing application, wherein the image processing application configures the processor to obtain image data, wherein the image data includes a set of images including a reference image and at least one alternate view image, generate a depth map based on the image data, determine at least one prediction image based on the reference image and the depth map, compute prediction error data based on the at least one prediction image and the at least one alternate view image, and generate compressed light field representation data based on the reference image, the prediction error data, and the depth map.


Systems and methods in accordance with embodiments of the invention implement one-dimensional array cameras, as well as modular array cameras using sub-array modules. In one embodiment, a 1N array camera module includes: a 1N arrangement of focal planes, where N is greater than or equal to 2, each focal plane includes a plurality of rows of pixels that also form a plurality of columns of pixels, and each focal plane not including pixels from another focal plane; and a 1N arrangement of lens stacks, the arrangement of lens stacks being disposed relative to the arrangement of focal planes so as to form a 1N arrangement of cameras, each configured to independently capture an image of a scene, where each lens stack has a field of view that is shifted with respect to that of each other lens stack so that each shift includes a sub-pixel shifted view of the scene.


Patent
Pelican Imaging | Date: 2016-08-19

Array cameras, and array camera modules incorporating independently aligned lens stacks are disclosed. Processes for manufacturing array camera modules including independently aligned lens stacks can include: forming at least one hole in at least one carrier; mounting the at least one carrier relative to at least one sensor so that light passing through the at least one hole in the at least one carrier is incident on a plurality of focal planes formed by arrays of pixels on the at least one sensor; and independently mounting a plurality of lens barrels to the at least one carrier, so that a lens stack in each lens barrel directs light through the at least one hole in the at least one carrier and focuses the light onto one of the plurality of focal planes.


Systems and methods for synthesizing high resolution images using image deconvolution and depth information in accordance embodiments of the invention are disclosed. In one embodiment, an array camera includes a processor and a memory, wherein an image deconvolution application configures the processor to obtain light field image data, determine motion data based on metadata contained in the light field image data, generate a depth-dependent point spread function based on the synthesized high resolution image, the depth map, and the motion data, measure the quality of the synthesized high resolution image based on the generated depth-dependent point spread function, and when the measured quality of the synthesized high resolution image is within a quality threshold, incorporate the synthesized high resolution image into the light field image data.


Systems and methods in accordance with embodiments of the invention are disclosed that use super-resolution (SR) processes to use information from a plurality of low resolution (LR) images captured by an array camera to produce a synthesized higher resolution image. One embodiment includes obtaining input images using the plurality of imagers, using a microprocessor to determine an initial estimate of at least a portion of a high resolution image using a plurality of pixels from the input images, and using a microprocessor to determine a high resolution image that when mapped through the forward imaging transformation matches the input images to within at least one predetermined criterion using the initial estimate of at least a portion of the high resolution image. In addition, each forward imaging transformation corresponds to the manner in which each imager in the imaging array generate the input images, and the high resolution image synthesized by the microprocessor has a resolution that is greater than any of the input images.


Architectures for imager arrays configured for use in array cameras in accordance with embodiments of the invention are described. One embodiment of the invention includes a plurality of focal planes, where each focal plane comprises a two dimensional arrangement of pixels having at least two pixels in each dimension and each focal plane is contained within a region of the imager array that does not contain pixels from another focal plane, control circuitry configured to control the capture of image information by the pixels within the focal planes, where the control circuitry is configured so that the capture of image information by the pixels in at least two of the focal planes is separately controllable, and sampling circuitry configured to convert pixel outputs into digital pixel data.


Systems and methods are described for generating restricted depth of field depth maps. In one embodiment, an image processing pipeline application configures a processor to: determine a desired focal plane distance and a range of distances corresponding to a restricted depth of field for an image rendered from a reference viewpoint; generate a restricted depth of field depth map from the reference viewpoint using the set of images captured from different viewpoints, where depth estimation precision is higher for pixels with depth estimates within the range of distances corresponding to the restricted depth of field and lower for pixels with depth estimates outside of the range of distances corresponding to the restricted depth of field; and render a restricted depth of field image from the reference viewpoint using the set of images captured from different viewpoints and the restricted depth of field depth map.


Patent
Pelican Imaging | Date: 2016-10-06

Systems and methods for extended color processing on Pelican array cameras in accordance with embodiments of the invention are disclosed. In one embodiment, a method of generating a high resolution image includes obtaining input images, where a first set of images includes information in a first band of visible wavelengths and a second set of images includes information in a second band of visible wavelengths and non-visible wavelengths, determining an initial estimate by combining the first set of images into a first fused image, combining the second set of images into a second fused image, spatially registering the fused images, denoising the fused images using bilateral filters, normalizing the second fused image in the photometric reference space of the first fused image, combining the fused images, determining a high resolution image that when mapped through a forward imaging transformation matches the input images within at least one predetermined criterion.


A camera array, an imaging device and/or a method for capturing image that employ a plurality of imagers fabricated on a substrate is provided. Each imager includes a plurality of pixels. The plurality of imagers include a first imager having a first imaging characteristics and a second imager having a second imaging characteristics. The images generated by the plurality of imagers are processed to obtain an enhanced image compared to images captured by the imagers. Each imager may be associated with an optical element fabricated using a wafer level optics (WLO) technology.

Loading Pelican Imaging collaborators
Loading Pelican Imaging collaborators