Beijing, China
Beijing, China

Peking University , is a major Chinese research university located in Beijing and a member of the C9 League. It is the first established modern national university of China, founded as the "Imperial University of Peking" in 1898 as a replacement of the ancient Guozijian. By 1920, it had become a center for progressive thought. It has been consistently regarded by both domestic and international university rankings as, alongside Tsinghua University, the top higher learning institution in mainland China. In addition to academics, Peking University is especially renowned for its campus grounds, and the beauty of its traditional Chinese architecture.Throughout its history, the university has educated and hosted many prominent modern Chinese thinkers, including figures such as: Lu Xun, Mao Zedong, Gu Hongming, Hu Shih, Li Dazhao, and Chen Duxiu. Peking University was influential in the birth of China's New Culture Movement, May Fourth Movement, the Tiananmen Square protest of 1989 and many other significant events. Wikipedia.


Time filter

Source Type

Patent
Peking University, Pkucare Pharmaceutical R&D Center and Pku Healthcare Industry Group Co. | Date: 2014-12-30

The present invention provides a polysubstituted pyridine compound of Formula I, a preparation method, a use and a pharmaceutical composition thereof. The polysubstituted pyridine compound of Formula I according to the present invention has an excellent anti-tumor effect, can inhibit various cell kinases simultaneously, has significantly excellent pharmacokinetic characteristics, and is very suitable for oral and intravenous administration. The pharmaceutical composition according to the present invention can be useful for treating tumors and cancers.


Patent
Peking University | Date: 2014-11-14

An ultraviolet light sensing circuit and sensing system. The ultraviolet light sensing circuit comprises a modulation unit and a phase delay unit, wherein the modulation unit comprises a first stage of inverter which is used for sensing ultraviolet light and is used as a voltage feedback modulation stage; and the phase delay unit comprises N stages of inverters which are connected in sequence, where N is an even number which is greater than or equal to 2. The modulation unit is connected to the phase delay unit in sequence, and the output voltage of the phase delay unit is fed to the modulation unit; and the modulation unit is modulated by a control signal which is a pulse signal. The ultraviolet light sensing circuit and sensing system can be used for ultraviolet light information communications. The ultraviolet light sensing circuit can sense ultraviolet light signals and output amplitude modulation wave signals.


Patent
Peking University, Pkucare Pharmaceutical R&D Center and Pku Healthcare Industry Group Co. | Date: 2017-02-15

The present invention provides a polysubstituted pyridine compound of Formula I, a preparation method, a use and a pharmaceutical composition thereof. The polysubstituted pyridine compound of Formula I according to the present invention has an excellent anti-tumor effect, can inhibit various cell kinases simultaneously, has significantly excellent pharmacokinetic characteristics, and is very suitable for oral and intravenous administration. The pharmaceutical composition according to the present invention can be useful for treating tumors and cancers.


Patent
ZTE Corporation and Peking University | Date: 2017-01-18

A method for compressing a local feature descriptor includes that: at least one local feature descriptor of a target image is selected; and multi-stage vector quantization is carried out on the selected at least one local feature descriptor according to a pre-set code book, and the local feature descriptor is quantized as a feature code stream, wherein the feature code stream includes serial numbers of code words obtained by means of the multi-stage vector quantization. A device for compressing a local feature descriptor and a storage medium are also provided.


The present invention relates to a rare earth-based nanoparticle magnetic resonance contrast agent and a preparation method thereof. The rare earth-based nanoparticle magnetic resonance contrast agent is rare earth-based inorganic nanoparticles having the surfaces coated with hydrophilic ligands. The rare earth-based nanoparticles are first obtained by a high-temperature oil phase reaction, and then the surfaces thereof are coated with hydrophilic molecules to obtain the rare earth-based nanoparticle magnetic resonance contrast agent. Compared with the existing clinical contrast agent, the magnetic resonance contrast agent of the present invention has a greatly improved relaxivity, a good imaging effect, a low required injection dose, and long in vivo residence time. In addition, the rigid structure of the inorganic nanoparticles can effectively reduce the leakage possibility of gadolinium ions.


Yu H.,Peking University
Journal of Materials Chemistry C | Year: 2014

Famous for their photoisomerization, azobenzene and its derivatives have been intensively studied as among the most fascinating advanced materials. In particular, azobenzene-containing liquid-crystalline polymer (LCP) materials show unique properties by combining the self-assembly of liquid crystals and photoresponsive performance of chromophores. Here, we highlight their intriguing properties and potential applications from photonics to photodriven motion as well as the novel nanotechnology. The photoresponsive features such as photochemical phase transition, photoinduced alignment and photo-triggered cooperative motion often result in a large modulation of the refractive index, which can be easily fixed in LCP films. This is very advantageous for their photonic applications. Upon forming connections by three-dimensional crosslinking, a large deformation can be photoinduced from the micro to the macro scale, enabling applications as photomechanical and photomobile materials to be found. Upon integrating with the microphase separation of well-defined block copolymers, they exhibit photocontrollable regular nanostructures on the macroscopic scale with excellent reproducibility and mass production, meaning they can be used as nanotemplates for nanoengineering and nanofabrication. This journal is © the Partner Organisations 2014.


Guo X.,Peking University
Advanced Materials | Year: 2013

Interactions between biological molecules are fundamental to biology. Probing the complex behaviors of biological systems at the molecular level provides new opportunities to uncover the wealth of molecular information that is usually hidden in conventional ensemble experiments and address the "unanswerable" questions in the physical, chemical and biological sciences. Nanometer-scale materials are particularly well matched with biomolecular interactions due to their biocompatibility, size comparability, and remarkable electrical properties, thus setting the basis for biological sensing with ultrahigh sensitivity. This brief review aims to highlight the recent progress of the burgeoning field of single-molecule electrical biosensors based on nanomaterials, with a particular focus on single-walled carbon nanotubes (SWNTs), for better understanding of the molecular structure, interacting dynamics, and molecular functions. The perspectives and key issues that will be critical to the success of next-generation single-molecule biosensors toward practical applications are also discussed, such as the device reproducibility, system integration, and theoretical simulation. Recent progress in the development of single-molecule electrical biosensors based on nanomaterials is highlighted. Particular focus is given to single-walled carbon nanotubes (SWNTs), for better understanding of the molecular structure, interacting dynamics, and molecular functions. Key issues that will be critical to the success of next-generation single-molecule biosensors toward practical applications are also discussed, such as the device reproducibility, system integration, and theoretical simulation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Jiang H.,Peking University
Journal of Physical Chemistry C | Year: 2012

Molybdenum and tungsten dichalcogenides, MX 2 (M = Mo and W; X = S and Se), characterized by their quasi-two-dimensional layered structure, have attracted intensive interest due to their intriguing physical and chemical properties. In this work, quasi-particle electronic properties of these materials are investigated by many-body perturbation theory in the GW approximation, currently the most accurate first-principles approach for electronic band structure of extended systems. It is found that the fundamental band gaps of all of these materials can be well described by the GW approach, and the calculated density of states from GW quasi-particle band energies agree very well with photoemission spectroscopy data. Ionization potentials of these materials are also studied by combining the slab model using density functional theory and GW correction. On the basis of our theoretical findings, we predict that none of the materials in MX 2 (M = Zr, Hf, Mo, and W; X = S and Se) in their bulk form can be directly used as the photocatalyst for overall photosplitting of water because their VBM and CBM energies do not match the redox potentials of water oxidation and reduction, which, however, can be changed by forming nanostructures, especially for MoS 2. © 2012 American Chemical Society.


Rosenstein B.,National Chiao Tung University | Li D.,Peking University
Reviews of Modern Physics | Year: 2010

Thermodynamics of type II superconductors in electromagnetic field based on the Ginzburg-Landau theory is presented. The Abrikosov flux lattice solution is derived using an expansion in a parameter characterizing the "distance" to the superconductor-normal phase transition line. The expansion allows a systematic improvement of the solution. The phase diagram of the vortex matter in magnetic field is determined in detail. In the presence of significant thermal fluctuations on the mesoscopic scale (for example, in high Tc materials) the vortex crystal melts into a vortex liquid. A quantitative theory of thermal fluctuations using the lowest Landau level approximation is given. It allows one to determine the melting line and discontinuities at melt, as well as important characteristics of the vortex liquid state. In the presence of quenched disorder (pinning) the vortex matter acquires certain "glassy" properties. The irreversibility line and static properties of the vortex glass state are studied using the "replica" method. Most of the analytical methods are introduced and presented in some detail. Various quantitative and qualitative features are compared to experiments in type II superconductors, although the use of a rather universal Ginzburg-Landau theory is not restricted to superconductivity and can be applied with certain adjustments to other physical systems, for example, rotating Bose-Einstein condensate. © 2010 The American Physical Society.


We aimed to improve the outcome of t(8;21) acute myeloid leukemia (AML) in the first complete remission (CR1) by applying risk-directed therapy based on minimal residual disease (MRD) determined by RUNX1/RUNX1T1 transcript levels. Risk-directed therapy included recommending allogeneic hematopoietic stem cell transplantation (allo-HSCT) for high-risk patients and chemotherapy/autologous-HSCT (auto-HSCT) for low-risk patients. Among 116 eligible patients, MRD status after the second consolidation rather than induction or first consolidation could discriminate high-risk relapse patients (P = .001). Allo-HSCT could reduce relapse and improve survival compared with chemotherapy for high-risk patients (cumulative incidence of relapse [CIR]: 22.1% vs 78.9%, P < .0001; disease-free survival [DFS]: 61.7% vs 19.6%, P = .001), whereas chemotherapy/auto-HSCT achieved a low relapse rate (5.3%) and high DFS (94.7%) for low-risk patients. Multivariate analysis revealed that MRD status and treatment choice were independent prognostic factors for relapse, DFS, and OS. We concluded that MRD status after the second consolidation may be the best timing for treatment choice. MRD-directed risk stratification treatment may improve the outcome of t(8;21) AML in CR1. This trial was registered at http://www.chictr.org as #ChiCTR-OCH-12002406.

Loading Peking University collaborators
Loading Peking University collaborators