Time filter

Source Type

Yoshida K.,University of Tokyo | Yoshida K.,Tokyo Institute of Technology | Watanabe C.K.,University of Tokyo | Hachiya T.,University of Tokyo | And 4 more authors.
Plant, Cell and Environment | Year: 2011

In order to ensure the cooperative function with the photosynthetic system, the mitochondrial respiratory chain needs to flexibly acclimate to a fluctuating light environment. The non-phosphorylating alternative oxidase (AOX) is a notable respiratory component that may support a cellular redox homeostasis under high-light (HL) conditions. Here we report the distinct acclimatory manner of the respiratory chain to long- and short-term HL conditions and the crucial function of AOX in Arabidopsis thaliana leaves. Plants grown under HL conditions (HL plants) possessed a larger ubiquinone (UQ) pool and a higher amount of cytochrome c oxidase than plants grown under low light conditions (LL plants). These responses in HL plants may be functional for efficient ATP production and sustain the fast plant growth. When LL plants were exposed to short-term HL stress (sHL), the UQ reduction level was transiently elevated. In the wild-type plant, the UQ pool was re-oxidized concomitantly with an up-regulation of AOX. On the other hand, the UQ reduction level of the AOX-deficient aox1a mutant remained high. Furthermore, the plastoquinone pool was also more reduced in the aox1a mutant under such conditions. These results suggest that AOX plays an important role in rapid acclimation of the respiratory chain to sHL, which may support efficient photosynthetic performance. © 2011 Blackwell Publishing Ltd.

Hachiya T.,University of Tokyo | Mizokami Y.,University of Tokyo | Miyata K.,University of Tokyo | Tholen D.,Partner Institute of Computational Biology | And 2 more authors.
Journal of Plant Research | Year: 2011

NRT1.1 is a putative nitrate sensor and is involved in many nitrate-dependent responses. On the other hand, a nitrate-independent function of NRT1.1 has been implied, but the clear-cut evidence is unknown. We found that NRT1.1 mutants showed enhanced tolerance to concentrated ammonium as sole N source in Arabidopsis thaliana. This unique phenotype was not observed in mutants of NLP7, which has been suggested to play a role in the nitrate-dependent signaling pathway. Our real-time PCR analysis, and evidence from a literature survey revealed that several genes relevant to the aliphatic glucosinolate-biosynthetic pathway were regulated via a nitrate-independent signal from NRT1.1. When taken together, the present study strongly suggests the existence of a nitrate-independent function of NRT1.1. © 2010 The Botanical Society of Japan and Springer.

Hachiya T.,University of Tokyo | Watanabe C.K.,University of Tokyo | Boom C.,Partner Institute of Computational Biology | Tholen D.,Partner Institute of Computational Biology | And 6 more authors.
Plant, Cell and Environment | Year: 2010

Oxygen uptake rates are increased when concentrated ammonium instead of nitrate is used as sole N source. Several explanations for this increased respiration have been suggested, but the underlying mechanisms are still unclear. To investigate possible factors responsible for this respiratory increase, we measured the O2 uptake rate, activity and transcript level of respiratory components, and concentration of adenylates using Arabidopsis thaliana shoots grown in media containing various N sources. The O2 uptake rate was correlated with concentrations of ammonium and ATP in shoots, but not related to the ammonium assimilation. The capacity of the ATP-coupling cytochrome pathway (CP) and its related genes were up-regulated when concentrated ammonium was sole N source, whereas the ATP-uncoupling alternative oxidase did not influence the extent of the respiratory increase. Our results suggest that the ammonium-dependent increase of the O2 uptake rate can be explained by the up-regulation of the CP, which may be related to the ATP consumption by the plasma-membrane H+-ATPase. © 2010 Blackwell Publishing Ltd.

Loading Partner Institute of Computational Biology collaborators
Loading Partner Institute of Computational Biology collaborators