Time filter

Source Type

Bhering L.L.,Federal University of Viçosa | Laviola B.G.,Parque Estacao Biologica PqEB | Salgado C.C.,Federal University of Viçosa | Sanchez C.F.B.,Federal University of Viçosa | And 2 more authors.
Pesquisa Agropecuaria Brasileira | Year: 2012

The objective of this work was to estimate genetic gains in physic nut (Jatropha curcas) using selection indexes and to establish the best selection strategy for the species. Direct and indirect selection was carried out using different selection indexes, totalizing 14 strategies. One hundred and seventy five families from the active germplasm bank of Embrapa Agroenergy, Brasília, Brazil, were analyzed in a randomized complete block design with two replicates. The evaluated traits were: grain yield; seeds per fruit; endosperm/seed ratio; seed weight, length, width, and thickness; branches per plant at 0.5, 1.0, and 1.5 m; plant height; stem diameter; canopy projection on rows and between lines; canopy volume; juvenility (days to the first flowering); and height of the first inflorescence. Evaluations were done during the second year of cultivation. The use of selection indexes is relevant to maximize the genetic gains in physic nut, favoring a better distribution of desirable traits. The multiplicative and restrictive indexes are considered the most promising for selection.

Artico S.,Federal University of Rio de Janeiro | Lambret-Frotte J.,Federal University of Rio de Janeiro | Nardeli S.M.,Federal University of Rio de Janeiro | Oliveira-Neto O.B.,Parque Estacao Biologica PqEB | And 3 more authors.
Plant Molecular Biology Reporter | Year: 2014

Engineering of plant protection requires well-characterized tissue-specific promoters for the targeted expression of insecticidal resistance genes. Herein, we describe the isolation of five different fragments of promoters of three distinct flower-specific cotton (Gossypium hirsutum) genes. Expression analyses of the three genes GhPME-like1, GhβGal-like1 and GhPL-like1 revealed that they are expressed highly in flowers buds ranging from 4 to 12 mm in size. Several putative regulatory cis-elements were identified in the promoter regions, including elements involved in the control of tissue-specific gene expression in pollen grains and fruits. In vivo analyses of these promoters were performed using the heterologous plant system Arabidopsis thaliana by fusing them with the gene uidA (GUS). GUS staining in Arabidopsis tissues revealed that their expression was restricted to anthers, with the majority of expression in pollen grains and in the upper portion of the carpels and siliques. A comparison between a CaMV35S::GUS constitutive promoter and the promoters isolated in this study revealed that the cotton promoters were more active and were specific to flowers and fruits, which are organs that are preferentially attacked by important pest insects such as the boll weevil (Anthonomus grandis). The activity of the promoters was also confirmed using transient expression assays in flower buds of G. hirsutum. The promoters of GhPME-like1, GhβGal-like1 and GhPL-like1 are specific to reproductive tissues and could represent important biotechnological tools for controlling insect pests, in particular the cotton boll weevil, which attacks floral and fruit tissues. © 2013 Springer Science+Business Media New York.

Loading Parque Estacao Biologica PqEB collaborators
Loading Parque Estacao Biologica PqEB collaborators