Entity

Time filter

Source Type


Shapiro A.C.,Park Nicollet Institute and Frauenshuh Cancer Center | Adlis S.A.,Park Nicollet Institute and Frauenshuh Cancer Center | Robien K.,George Washington University | Kirstein M.N.,University of Minnesota | And 3 more authors.
Breast Cancer Research and Treatment | Year: 2016

The purpose of the study was to evaluate the efficacy and safety of vitamin D3 at 4000 IU/day as a treatment option for aromatase inhibitor-associated musculoskeletal symptoms (AIMSS) when compared with the usual care dose of 600 IU D3. We conducted a single site randomized, double-blind, phase 3 clinical trial in women with AIMSS comparing change in symptoms, reproductive hormones and AI pharmacokinetics. Postmenopausal women ≥18 years with stages I–IIIA breast cancer, taking AI and experiencing AIMSS [breast cancer prevention trial symptom scale-musculoskeletal (BCPT-MS) subscale ≥1.5] were admitted. Following randomization, 116 patients had a run-in period of 1 month on 600 IU D3, then began the randomized assignment to either 600 IU D3 (n = 56) or 4000 IU D3 (n = 57) daily for 6 months. The primary endpoint was a change in AIMSS from baseline (after 1 month run-in) on the BCPT-MS (general MS pain, joint pain, muscle stiffness, range for each question: 0 = not at all to 4 = extremely). Groups had no statistically significant differences demographically or clinically. There were no discernable differences between the randomly allocated treatment groups at 6 months in measures of AIMSS, pharmacokinetics of anastrozole and letrozole, serum levels of reproductive hormones, or adverse events. We found no significant changes in AIMSS measures between women who took 4000 IU D3 daily compared with 600 IU D3. The 4000 IU D3 did not adversely affect reproductive hormone levels or the steady state pharmacokinetics of anastrozole or letrozole. In both groups, serum 25(OH)D remained in the recommended range for bone health (≥30 ng/mL) and safety (<50 ng/mL). © 2016, Springer Science+Business Media New York. Source

Discover hidden collaborations