Entity

Time filter

Source Type

Le Touquet – Paris-Plage, France

Decrock E.,Ghent University | De Bock M.,Ghent University | Wang N.,Ghent University | Bultynck G.,Catholic University of Leuven | And 6 more authors.
Cellular and Molecular Life Sciences | Year: 2015

The central nervous system (CNS) is composed of a highly heterogeneous population of cells. Dynamic interactions between different compartments (neuronal, glial, and vascular systems) drive CNS function and allow to integrate and process information as well as to respond accordingly. Communication within this functional unit, coined the neuro-glio-vascular unit (NGVU), typically relies on two main mechanisms: direct cell-cell coupling via gap junction channels (GJCs) and paracrine communication via the extracellular compartment, two routes to which channels composed of transmembrane connexin (Cx) or pannexin (Panx) proteins can contribute. Multiple isoforms of both protein families are present in the CNS and each CNS cell type is characterized by a unique Cx/Panx portfolio. Over the last two decades, research has uncovered a multilevel platform via which Cxs and Panxs can influence different cellular functions within a tissue: (1) Cx GJCs enable a direct cell-cell communication of small molecules, (2) Cx hemichannels and Panx channels can contribute to autocrine/paracrine signaling pathways, and (3) different structural domains of these proteins allow for channel-independent functions, such as cell-cell adhesion, interactions with the cytoskeleton, and the activation of intracellular signaling pathways. In this paper, we discuss current knowledge on their multifaceted contribution to brain development and to specific processes in the NGVU, including synaptic transmission and plasticity, glial signaling, vasomotor control, and blood-brain barrier integrity in the mature CNS. By highlighting both physiological and pathological conditions, it becomes evident that Cxs and Panxs can play a dual role in the CNS and that an accurate fine-tuning of each signaling mechanism is crucial for normal CNS physiology. © 2015 Springer Basel. Source


Allard C.,French National Center for Scientific Research | Allard C.,French National Institute for Agricultural Research | Allard C.,University of Burgundy | Carneiro L.,French National Center for Scientific Research | And 26 more authors.
Journal of Cerebral Blood Flow and Metabolism | Year: 2014

Hypothalamic glucose detection participates in maintaining glycemic balance, food intake, and thermogenesis. Although hypothalamic neurons are the executive cells involved in these responses, there is increasing evidence that astrocytes participate in glucose sensing (GS); however, it is unknown whether astroglial networking is required for glucose sensitivity. Astroglial connexins 30 and 43 (Cx30 and Cx43) form hexameric channels, which are apposed in gap junctions, allowing for the intercellular transfer of small molecules such as glucose throughout the astroglial networks. Here, we hypothesized that hypothalamic glucose sensitivity requires these connexins. First, we showed that both Cxs are enriched in the rat hypothalamus, with highly concentrated Cx43 expression around blood vessels of the mediobasal hypothalamus (MBH). Both fasting and high glycemic levels rapidly altered the protein levels of MBH astroglial connexins, suggesting cross talk within the MBH between glycemic status and the connexins' ability to dispatch glucose. Finally, the inhibition of MBH Cx43 (by transient RNA interference) attenuated hypothalamic glucose sensitivity in rats, which was demonstrated by a pronounced decreased insulin secretion in response to a brain glucose challenge. These results illustrate that astroglial connexins contribute to hypothalamic GS. Source


Perdiguero E.G.,The Interdisciplinary Center | Perdiguero E.G.,French National Center for Scientific Research | Perdiguero E.G.,French Institute of Health and Medical Research | Perdiguero E.G.,Paris Science Lettre Research University | And 23 more authors.
Journal of Biological Chemistry | Year: 2011

Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice.Wereport altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc. Source


Boulay A.-C.,The Interdisciplinary Center | Boulay A.-C.,University Pierre and Marie Curie | Boulay A.-C.,Paris Science Lettre Research University | Burbassi S.,The Interdisciplinary Center | And 14 more authors.
Biochimie | Year: 2013

Bmcc1s, a brain-enriched short isoform of the BCH-domain containing molecule Bmcc1, has recently been shown to interact with the microtubule-associated protein MAP6 and to regulate cell morphology. Here we identified kidney-type glutaminase (KGA), the mitochondrial enzyme responsible for the conversion of glutamine to glutamate in neurons, as a novel partner of Bmcc1s. Co-immunoprecipitation experiments confirmed that Bmcc1s and KGA form a physiological complex in the brain, whereas binding and modeling studies showed that they interact with each other. Overexpression of Bmcc1s in mouse primary cortical neurons impaired proper mitochondrial targeting of KGA leading to its accumulation within the cytoplasm. Thus, Bmcc1s may control the trafficking of KGA to the mitochondria. © 2012 Elsevier Masson SAS. All rights reserved. Source


Koulakoff A.,The Interdisciplinary Center | Koulakoff A.,University Pierre and Marie Curie | Koulakoff A.,Paris Science Lettre Research University | Mei X.,The Interdisciplinary Center | And 7 more authors.
Biochimica et Biophysica Acta - Biomembranes | Year: 2012

A hallmark of neurodegenerative diseases is the reactive gliosis characterized by a phenotypic change in astrocytes and microglia. This glial response is associated with modifications in the expression and function of connexins (Cxs), the proteins forming gap junction channels and hemichannels. Increased Cx expression is detected in most reactive astrocytes located at amyloid plaques, the histopathological lesions typically present in the brain of Alzheimer's patients and animal models of the disease. The activity of Cx channels analyzed in vivo as well as in vitro after treatment with the amyloid β peptide is also modified and, in particular, hemichannel activation may contribute to neuronal damage. In this review, we summarize and discuss recent data that suggest glial Cx channels participate in the neurodegenerative process of Alzheimer's disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. © 2011 Elsevier B.V. Source

Discover hidden collaborations