Paris Science Lettre Research University

Paris, France

Paris Science Lettre Research University

Paris, France
Time filter
Source Type

Roux L.,The Interdisciplinary Center | Roux L.,University Pierre and Marie Curie | Roux L.,Paris Science Lettre Research University | Benchenane K.,University Pierre and Marie Curie | And 6 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2011

Several recent findings have shown that neurons as well as astrocytes are organized into networks. Indeed, astrocytes are interconnected through connexin-formed gap junction channels allowing exchanges of ions and signaling molecules. The aim of this study is to characterize astrocyte network properties in mouse olfactory glomeruli where neuronal connectivity is highly ordered. Dyecoupling experiments performed in olfactory bulb acute slices (P16-P22) highlight a preferential communication between astrocytes within glomeruli and not between astrocytes in adjacent glomeruli. Such organization relies on the oriented morphology of glomerular astrocytes to the glomerulus center and the enriched expression of two astroglial connexins (Cx43 and Cx30) within the glomeruli. Glomerular astrocytes detect neuronal activity showing membrane potential fluctuations correlated with glomerular local field potentials. Accordingly, gap junctional coupling of glomerular networks is reduced when neuronal activity is silenced by TTX treatment or after early sensory deprivation. Such modulation is lost in Cx30 but not in Cx43 KO mice, indicating that Cx30-formed channels are the molecular targets of this activity-dependent modulation. Extracellular potassiumis a key player in this neuroglial interaction, because (i) the inhibition of dye coupling observed in the presence of TTX or after sensory deprivation is restored by increasing [K +] eand (ii) treatment with a K ir channel blocker inhibits dye spread between glomerular astrocytes. Together, these results demonstrate that extracellular potassium generated by neuronal activity modulates Cx30-mediated gap junctional communication between glomerular astrocytes, indicating that strong neuroglial interactions take place at this first relay of olfactory information processing.

Boulay A.-C.,Collège de France | Boulay A.-C.,University Pierre and Marie Curie | Boulay A.-C.,Paris Science Lettre Research University | del Castillo F.J.,Institute Pasteur Paris | And 15 more authors.
Journal of Neuroscience | Year: 2013

Gjb2 and Gjb6, two contiguous genes respectively encoding the gap junction protein connexin26 (Cx26) and connexin 30 (Cx30) display overlapping expression in the inner ear. Both have been linked to the most frequent monogenic hearing impairment, the recessive isolated deafness DFNB1. Although there is robust evidence for the direct involvement of Cx26 in cochlear functions, the contribution of Cx30 is unclear since deletion of Cx30 strongly downregulates Cx26 both in human and in mouse. Thus, it is imperative that any role of Cx30 in audition be clearly evaluated. Here, we developed a new Cx30 knock-out mouse model (Cx30{increment}/{increment}) in which half of Cx26 expression was preserved. Our results show that Cx30 and Cx26 coordinated expression is dependent on the spacing of their surrounding chromosomic region, and that Cx30{increment}/{increment} mutants display normal hearing. Thus, in deaf patients with GJB6 deletion as well as in the previous Cx30 knock-out mouse model, defective Cx26 expression is the likely cause of deafness, and in contrast to current opinion, Cx30 is dispensable for cochlear functions. © 2013 the authors.

Gangoso E.,University of Salamanca | Ezan P.,The Interdisciplinary Center | Ezan P.,University Pierre and Marie Curie | Ezan P.,Paris Science Lettre Research University | And 10 more authors.
GLIA | Year: 2012

In diverse brain pathologies, astrocytes become reactive and undergo profound phenotypic changes. Connexin43 (Cx43), the main gap junction channel-forming protein in astrocytes, is one of the proteins modified in reactive astrocytes. Downregulation of Cx43 in cultured astrocytes activates c-Src, promotes proliferation, and increases the rate of glucose uptake; however, so far there have been no studies examining whether this cascade of events takes place in reactive astrocytes. In this work, we analyzed this pathway after a cortical lesion induced by a kainic acid injection. As previously described, astrocytes reacted to the lesion with an increase in glial fibrillary acidic protein and a decrease in Cx43 expression. Some of these reactive astrocytes proliferated, as estimated by bromodeoxyuridine incorporation and cyclins D1 and D3 upregulation. In addition, the expression of the glucose transporter GLUT-3 and the enzyme responsible for glucose phosphorylation, Type II hexokinase (Hx-2), were induced in reactive astrocytes, suggesting an increased glucose uptake. Previous in vitro studies reported that c-Src is the link between Cx43 and glucose uptake and proliferation in astrocytes. Here, we found that c-Src activity increased in the lesioned area. c-Src activation and Cx43 downregulation preceded the peak of Hx-2 and cyclin D3 expression, suggesting that c-Src could mediate the effect of Cx43 on glucose uptake and proliferation in reactive astrocytes after an excitotoxic insult. Interestingly, we identify c-Src, GLUT-3, and Hx-2 in the signaling mechanisms involved in the reaction of astroglia to injury. Altogether these data contribute to identify new therapeutical targets to enhance astrocyte neuroprotective activities. © 2012 Wiley Periodicals, Inc.

Koulakoff A.,The Interdisciplinary Center | Koulakoff A.,University Pierre and Marie Curie | Koulakoff A.,Paris Science Lettre Research University | Mei X.,The Interdisciplinary Center | And 7 more authors.
Biochimica et Biophysica Acta - Biomembranes | Year: 2012

A hallmark of neurodegenerative diseases is the reactive gliosis characterized by a phenotypic change in astrocytes and microglia. This glial response is associated with modifications in the expression and function of connexins (Cxs), the proteins forming gap junction channels and hemichannels. Increased Cx expression is detected in most reactive astrocytes located at amyloid plaques, the histopathological lesions typically present in the brain of Alzheimer's patients and animal models of the disease. The activity of Cx channels analyzed in vivo as well as in vitro after treatment with the amyloid β peptide is also modified and, in particular, hemichannel activation may contribute to neuronal damage. In this review, we summarize and discuss recent data that suggest glial Cx channels participate in the neurodegenerative process of Alzheimer's disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. © 2011 Elsevier B.V.

Allard C.,French National Center for Scientific Research | Allard C.,French National Institute for Agricultural Research | Allard C.,University of Burgundy | Carneiro L.,French National Center for Scientific Research | And 26 more authors.
Journal of Cerebral Blood Flow and Metabolism | Year: 2014

Hypothalamic glucose detection participates in maintaining glycemic balance, food intake, and thermogenesis. Although hypothalamic neurons are the executive cells involved in these responses, there is increasing evidence that astrocytes participate in glucose sensing (GS); however, it is unknown whether astroglial networking is required for glucose sensitivity. Astroglial connexins 30 and 43 (Cx30 and Cx43) form hexameric channels, which are apposed in gap junctions, allowing for the intercellular transfer of small molecules such as glucose throughout the astroglial networks. Here, we hypothesized that hypothalamic glucose sensitivity requires these connexins. First, we showed that both Cxs are enriched in the rat hypothalamus, with highly concentrated Cx43 expression around blood vessels of the mediobasal hypothalamus (MBH). Both fasting and high glycemic levels rapidly altered the protein levels of MBH astroglial connexins, suggesting cross talk within the MBH between glycemic status and the connexins' ability to dispatch glucose. Finally, the inhibition of MBH Cx43 (by transient RNA interference) attenuated hypothalamic glucose sensitivity in rats, which was demonstrated by a pronounced decreased insulin secretion in response to a brain glucose challenge. These results illustrate that astroglial connexins contribute to hypothalamic GS.

Perdiguero E.G.,The Interdisciplinary Center | Perdiguero E.G.,French National Center for Scientific Research | Perdiguero E.G.,French Institute of Health and Medical Research | Perdiguero E.G.,Paris Science Lettre Research University | And 23 more authors.
Journal of Biological Chemistry | Year: 2011

Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice.Wereport altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

Boulay A.-C.,The Interdisciplinary Center | Boulay A.-C.,University Pierre and Marie Curie | Boulay A.-C.,Paris Science Lettre Research University | Burbassi S.,The Interdisciplinary Center | And 14 more authors.
Biochimie | Year: 2013

Bmcc1s, a brain-enriched short isoform of the BCH-domain containing molecule Bmcc1, has recently been shown to interact with the microtubule-associated protein MAP6 and to regulate cell morphology. Here we identified kidney-type glutaminase (KGA), the mitochondrial enzyme responsible for the conversion of glutamine to glutamate in neurons, as a novel partner of Bmcc1s. Co-immunoprecipitation experiments confirmed that Bmcc1s and KGA form a physiological complex in the brain, whereas binding and modeling studies showed that they interact with each other. Overexpression of Bmcc1s in mouse primary cortical neurons impaired proper mitochondrial targeting of KGA leading to its accumulation within the cytoplasm. Thus, Bmcc1s may control the trafficking of KGA to the mitochondria. © 2012 Elsevier Masson SAS. All rights reserved.

Decrock E.,Ghent University | De Bock M.,Ghent University | Wang N.,Ghent University | Bultynck G.,Catholic University of Leuven | And 6 more authors.
Cellular and Molecular Life Sciences | Year: 2015

The central nervous system (CNS) is composed of a highly heterogeneous population of cells. Dynamic interactions between different compartments (neuronal, glial, and vascular systems) drive CNS function and allow to integrate and process information as well as to respond accordingly. Communication within this functional unit, coined the neuro-glio-vascular unit (NGVU), typically relies on two main mechanisms: direct cell-cell coupling via gap junction channels (GJCs) and paracrine communication via the extracellular compartment, two routes to which channels composed of transmembrane connexin (Cx) or pannexin (Panx) proteins can contribute. Multiple isoforms of both protein families are present in the CNS and each CNS cell type is characterized by a unique Cx/Panx portfolio. Over the last two decades, research has uncovered a multilevel platform via which Cxs and Panxs can influence different cellular functions within a tissue: (1) Cx GJCs enable a direct cell-cell communication of small molecules, (2) Cx hemichannels and Panx channels can contribute to autocrine/paracrine signaling pathways, and (3) different structural domains of these proteins allow for channel-independent functions, such as cell-cell adhesion, interactions with the cytoskeleton, and the activation of intracellular signaling pathways. In this paper, we discuss current knowledge on their multifaceted contribution to brain development and to specific processes in the NGVU, including synaptic transmission and plasticity, glial signaling, vasomotor control, and blood-brain barrier integrity in the mature CNS. By highlighting both physiological and pathological conditions, it becomes evident that Cxs and Panxs can play a dual role in the CNS and that an accurate fine-tuning of each signaling mechanism is crucial for normal CNS physiology. © 2015 Springer Basel.

Ezan P.,The Interdisciplinary Center | Ezan P.,University Pierre and Marie Curie | Ezan P.,Paris Science Lettre Research University | Andre P.,University Paris Diderot | And 15 more authors.
Journal of Cerebral Blood Flow and Metabolism | Year: 2012

Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein connexins 43 and 30 (C×43 and C×30) allowing for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. The contribution of astroglial connexins to the physiology of the brain vascular system has never been addressed. Here, we show that C×43 and C×30 expression at the level of perivascular endfeet starts from postnatal days 2 and 12 and is fully mature at postnatal days 15 and 20, respectively, indicating that astroglial perivascular connectivity occurs and develops during postnatal blood-brain barrier (BBB) maturation. We demonstrate that mice lacking C×30 and C×43 in GFAP (glial fibrillary acidic protein)-positive cells display astrocyte endfeet edema and a partial loss of the astroglial water channel aquaporin-4 and Β-dystroglycan, a transmembrane receptor anchoring astrocyte endfeet to the perivascular basal lamina. Furthermore, the absence of astroglial connexins weakens the BBB, which opens upon increased hydrostatic vascular pressure and shear stress. These results demonstrate that astroglial connexins are necessary to maintain BBB integrity. © 2012 ISCBFM All rights reserved.

Loading Paris Science Lettre Research University collaborators
Loading Paris Science Lettre Research University collaborators