Time filter

Source Type

Fair Haven, VT, United States

Parenteau N.L.,Ingenium BioTherapy Corporation | Parenteau N.L.,Parenteau BioConsultants LLC
Tissue Engineering - Part A

Tissue engineering has always had an applied focus and there is hardly an academic publication that does not mention the applicability of its findings to the future development of a medical product. I have been involved in the industry side of tissue engineering from the start, pursuing a variety of applications, some making it to the marketplace. There have been many lessons that I have learned from direct experience (mistakes and successes), observation, through advising others, and now, in developing innovative ways to identify and eliminate the regenerative cell populations within a tumor. This brief overview of some of these lessons is written with the next generation of pioneering product developers in mind: the biologists, biochemists, and engineers who will dedicate their careers to driving medical and commercial progress in tissue engineering. © Copyright 2014, Mary Ann Liebert, Inc. 2014. Source

Parenteau N.,Parenteau BioConsultants LLC | Hardin-Young J.,Parenteau BioConsultants LLC | Shannon W.,BioRankings LLC | Shannon W.,University of Washington | And 3 more authors.
Tissue Engineering - Part B: Reviews

Regenerative therapies possess high theoretical potential for medical advance yet their success as commercial therapeutics is still open to debate. Appropriate data on target opportunities that provide perspective and enable strategic decision making is necessary for both efficient and effective translation. Up until now, this data have been out of reach to research scientists and many start-up companies-the very groups currently looked to for the critical advance of these therapies. The target-based estimate of opportunity presented in this report demonstrates its importance in evaluating medical need and technology feasibility. In addition, analysis of U.S. research spending, productivity, and innovation reveals that U.S. basic research in this field would benefit from greater interdisciplinarity. Overcoming the barriers that currently prevent translation into high value therapies that are quickly clinically adopted requires simultaneous integration of engineering, science, business, and clinical practice. Achieving this integration is nontrivial. © 2012, Mary Ann Liebert, Inc. Source

Tillman B.,McGowan Institute for Regenerative Medicine | Tillman B.,University of Pittsburgh | Hardin-Young J.,Parenteau BioConsultants LLC | Shannon W.,BioRankings LLC | And 3 more authors.
Tissue Engineering - Part B: Reviews

Cardiac and vascular diseases represent one of the most substantial medical areas for the applications of regenerative medicine. Despite advances in endovascular repair, surgical intervention, and disease management, atherosclerosis and heart failure continue to be prominent health problems. This report analyzes the regenerative medicine treatment opportunities in both cardiovascular and peripheral vascular repair, examining the treatment opportunities for tissue-engineered vascular grafts as well as cell-based therapies. U.S. hospital discharge data were used to generate a detailed estimate of the relative target populations for cardiac and vascular disease. Gap analyses were performed for vascular access, small caliber vascular grafts, and cell-based therapies for revascularization and heart failure. The analysis compared current alternatives, gaps in medical need, and what a tissue-engineered or regenerative alternative should achieve for optimum medical and commercial feasibility. Although the number of coronary bypass grafts vastly outnumbered peripheral grafts, a detailed consideration of re-grafts and the success of first grafts combined with gap analysis (GAP) leads us to conclude that peripheral vascular disease is the more commercially feasible and attractive target opportunity for engineered small caliber grafts for the foreseeable future. Cardiac bypass would need substantial long-term clinical experience, which could be a significant hurdle. Vascular access, often regarded as a first-in-man indication, is an excellent opportunity for an engineered graft as an alternative to arteriovenous fistula that could overcome complications associated with a prosthetic graft. The GAP also suggests that for heart failure, cellular therapies should link near-term changes in repair, such as improvement in cardiac output and reduced scarring with limiting progression of the disease, reducing the need for complex pharmacologic management, and reducing rates of hospitalization. Naturally, researchers must determine where their technology and know-how can be applied most effectively, but it is clear from our analysis that an astute strategy in the use of science and technology will be important to successful translation in this space. © 2013, Mary Ann Liebert, Inc. 2013. Source

Discover hidden collaborations