Sunnyvale, CA, United States
Sunnyvale, CA, United States

Time filter

Source Type

A method is performed at a touch sensing system that includes a two-dimensional capacitive sense array. The process measures the capacitance of the capacitive sensors, and identifies a first sensor whose measured capacitance is a local peak. The local peak is within a local rectangular array. The process computes column sums for each column of the rectangular array and determines whether to apply a smoothing algorithm. When the smoothing algorithm is not applied, the process computes an x-coordinate of a touch using a plurality of the column sums. When applying the smoothing algorithm, the process computes the x-coordinate of the touch as an average of two x-coordinate calculations. Each of the two x-coordinate calculations conditionally performs a horizontal shift of the local rectangular array based on comparing the peak measured capacitance to an adjacent measured capacitance and computes a respective x-coordinate using a respective plurality of the column sums.


Patent
Parade Technologies | Date: 2015-11-20

A service redirect operation mode allows a tester device to perform software burn-in, firmware upgrade, and other related device interrogation via a USB Type-C connection. The service redirect operation mode is implemented by modifying a termination state of the configuration channel pins of the USB Type-C receptacle of the device under test. Software and/or hardware executing on the device under test re-configure the resistive arrangement of the configuration channel pins, causing one pin to be connected to a reference voltage via a pull-up resistor and the other pin to be connected to ground via a pull-down resistor. When operating in the service redirect operating mode, two additional signal lines of the USB Type-C receptacles may be used to exchange information between the tester and the device under test using a user-specified interface protocol.


Patent
Parade Technologies | Date: 2016-03-15

A method of processing raw response signals for capacitive sense arrays is performed at an electronic device having one or more processors and a capacitive sense array. The process receives a raw response signal from the capacitive sense array. The process computes an offset signal that represents an average baseline value of the raw response signal over a period of time and filters the raw response signal to a limited frequency band, thereby forming a bandwidth limited signal. The process also computes a differential signal as the difference between the offset signal and the bandwidth limited signal and uses the differential signal to detect an object proximate to the capacitive sense array.


A system and method are disclosed to control the power consumption of column drivers in a display system. A video input signal is received which has an active video period and a vertical blanking period between frames. A timing controller transmits a first video frame to a column driver. The timing controller transmits a column driver disable command during a vertical blanking period. Prior to the subsequent active video period, the timing controller transmits a column driver enable command. The timing controller proceeds to transmit a second video frame to the column driver. In one embodiment, the timing controller determines whether to disable and enable the column driver based on a refresh rate, the refresh rate calculated by the timing controller from the video input signal.


Patent
Parade Technologies | Date: 2016-03-09

A touch sensing apparatus includes a touch sensing surface having a plurality of TX electrodes and a plurality of RX electrodes. The touch sensing apparatus also includes capacitance sensing circuitry. The circuitry receives a plurality of drive signals. For each of a plurality of scanning stages, the circuitry applies a respective one of the plurality of drive signals to each of the plurality of TX electrodes substantially simultaneously according to a respective TX pattern. The respective TX pattern for each scanning stage is distinct. The circuitry receives sense signals from the plurality of RX electrodes. Each of the plurality of sense signals represents capacitance of a respective intersection of a respective TX electrode and a respective RX electrode. The circuitry then correlates the received sense signals for the plurality of scanning stages with the received drive signals to detect an object proximate to the touch panel.


The various implementations described herein include systems, methods and/or devices used to enable touchscreen proximity sensing. An exemplary method is performed at a touch sensitive device and includes detecting the presence of water on a capacitive sense array (CSA). The method detects decreased electrode responses from at least a subset of a plurality of sensor electrodes of the CSA that satisfy one or more first trigger conditions. The method further includes: (1) normalizing the CSA based on the detected decrease in electrode responses to form a second baseline, (2) determining that the water is removed from the portion of the CSA based on one or more subsequent electrode responses from at least the subset of the plurality of sensor electrodes that satisfy one or more second trigger conditions, and (3) normalizing the CSA based on the detected one or more subsequent electrode responses to form a third baseline.


Patent
Parade Technologies | Date: 2016-04-12

A system comprises a processing device and a capacitive sense array that includes a plurality of electrodes. The system performs a first scan of a plurality of electrodes in a capacitive sense array to determine a position of a stylus. The system also performs one or more additional scans of subsets of the plurality of electrodes to determine additional positions of the stylus. The system may continually perform the additional scans on of the subsets of the plurality of electrodes until the stylus is no longer detected.


A system and method are disclosed to control the power consumption of column drivers in a display system. A video input signal is received which has an active video period and a vertical blanking period between frames. A timing controller transmits a first video frame to a column driver. The timing controller transmits a column driver disable command during a vertical blanking period. Prior to the subsequent active video period, the timing controller transmits a column driver enable command. The timing controller proceeds to transmit a second video frame to the column driver. In one embodiment, the timing controller determines whether to disable and enable the column driver based on a refresh rate, the refresh rate calculated by the timing controller from the video input signal.


Patent
Parade Technologies | Date: 2016-04-04

A touch sensing system includes a capacitive sense array. Each sensor has a unique location type. The system includes a capacitance measurement circuit coupled to the array, which measures capacitance changes at each sensor. The system also includes a memory device that stores three or more adjustment parameters. Each parameter corresponds to one or more location types, and is used in computing virtual sensor values. The system receives measured capacitance changes corresponding to a touch on the array and identifies a first sensor whose measured capacitance change is a local maximum. The system determines a location type of the first sensor. According to the location type, the adjustment parameters corresponding to the location type, and the measured capacitance changes, the system computes virtual sensor measurements. The system then computes a centroid of the touch using the measured capacitance changes and the virtual sensor measurements.


Patent
Parade Technologies | Date: 2016-03-25

A process determines touch orientation of touches on a sense array of a touch-sensing device. The process obtains first touch data and second touch data of a conductive object proximate to the sense array at two temporally proximate times. The first and second touch data are then used to determine a first touch orientation, and the second touch data is used to determine a touch area and a provisional touch orientation. A touch orientation change is then determined as an absolute difference between the first touch orientation and the provisional touch orientation. The touch orientation change is compared with a threshold change, and the touch area is compared with a threshold area. In accordance with comparison results, the first touch orientation, the provisional orientation, or a weighted combination of them is designated as a second touch orientation corresponding to one of the two temporally proximate times.

Loading Parade Technologies collaborators
Loading Parade Technologies collaborators