Entity

Time filter

Source Type

Chandigarh, India

Panjab University is a public Autonomous university located in Chandigarh Union Territory, India. It was established in 1882 making it one of the oldest universities in India. Panjab University was ranked the #1 university in India in the Times Higher Education World University Rankings list 2013-14.The campus is residential, spread over 550 acres in sectors 14 and 25 of the city of Chandigarh. The main administrative and academic buildings are located in sector 14, beside a health centre, a sports complex, hostels and residential housing.The university has 75 teaching and research departments and 15 centres/chairs for teaching and research at the main campus located at Chandigarh. It has 10 affiliated colleges spread over the states of Punjab, Haryana, Himachal Pradesh and U.T. of Chandigarh, with Regional Centres at Muktsar, Ludhiana and Hoshiarpur cities in Punjab state. Wikipedia.


Kumari R.,Panjab University
Nuclear Physics A | Year: 2013

We study fusion of halo nuclei with heavy targets using proximity based potentials due to Aage Winther (AW) 95, Bass 80 and Proximity 2010. In order to consider the extended matter distribution of halo nuclei, the nuclei radii borrowed from cross section measurements are included in these potentials. Our study reveals that the barrier heights are effectively reduced and fusion cross sections are appreciably enhanced by including extended radii of these nuclei. We also find that the extended sizes of halos contribute towards enhancement of fusion probabilities in case of proton halo nuclei, but, contribute to transfer or break-up process rather than fusion yield in case of neutron halo nuclei. © 2013 Elsevier B.V. Source


Biomass is a renewable, economic and readily available resource of energy that has potential to substitute fossil fuels in many applications such as heat, electricity and biofuels. The increased use of the agricultural biomass can help the agricultural based societies in achieving energy security and creating employment without causing environmental degradation. But, the viability and feasibility of electricity generation from agricultural biomass depends upon the availability of biomass supply at a competitive cost. The present study investigates the availability of agricultural biomass for distributed power generation in Punjab. The total production of the crop residues has been estimated by residue-to-product ratio (RPR) method. Further, the restrictions introduced by competitive uses as well as harvesting practices are taken into considerations to evaluate the available biomass potential. The biomass power potential has been obtained on considerations of energy contents of the particular crop residues and selecting appropriate conversion route. A total of 55.396 Mt of the agricultural residues are produced from various major crops. Out of these, 22.315 Mt (40.17%) of the agricultural biomass has been found to be surplus with an average density of 443 t/km2. These surplus residues can significantly be used to provide continuous, reliable and sustainable fuel supply for power plants. Cereals (rice, wheat, maize and barley) have major contribution (74.67%) in the surplus biomass, followed by cotton (25.01%) and sugarcane (0.2%). The estimated annual bio-energy potential of unused crop residues is 0.35 EJ (8.43% of India's potential), which is equivalent to 1.43% India's annual primary energy consumption. It has been revealed that a power potential of 2000-3000 MW can be exploited from these resources depending upon thermal efficiency. The study concludes with a discussion on significance and challenges of decentralized electricity generation for rural energy supply, including brief description about economical, social, environmental and technical aspects of bioelectricity. © 2014 Elsevier B.V. All rights reserved. Source


In the current investigation, the ameliorative effect of green tea (GT) and white tea (WT) against benzo(a)pyrene (BaP) induced oxidative stress and DNA damage has been studied in the livers and lungs of Balb/c mice. A single dose of BaP (125 mg/kg, b.w. orally) increased the levels of lipid peroxidation (LPO) and decreased endogenous antioxidants such as superoxide dismutase (SOD), glutahione reductase (GR), catalase (CAT), and glutathione (GSH) significantly. Pretreatment with GT and WT for 35 days before a single dose of BaP elevated the decreased activity of GR, SOD, and CAT in liver tissue and also tended to normalize the levels of GSH and LPO in both hepatic and pulmonary tissues. The percentage of DNA in comet tail and 8-hydroxy-2'-deoxyguanosine levels reflected the decreasing pattern of DNA damage from the BaP-treated group to the groups that received pretreatment with GT and WT. Our study concludes that both GT and WT are effective in combating BaP induced oxidative insult and DNA damage. However, WT was found to be more protective than GT with respect to CAT (only in the liver), percentage of DNA in comet tail (only in the lungs), GST activity, and GSH content in both the tissues. Source


Cancer research illustrated that combinatorial studies can provide significant improvement in safety and effectiveness over the monotherapy regimens. A combination of two drugs may restrain precancerous colon polyps, opening a new possible opportunity for chemoprevention of colon cancer. In this context, chemopreventive efficacy of a combination regimen of C-phycocyanin, a biliprotein present in Spirulina platensis, a cyanobacterium, which is a selective cycloxygenase-2 (COX-2) inhibitor and piroxicam, a traditional non-steroidal anti-inflammatory drug was considered in 1,2 dimethylhyadrazine (DMH)-induced colon carcinogenesis in rats. Western blotting, immunohistochemistry, DNA fragmentation, fluorescent staining, PGE(2) enzyme immunoassay, and carrageenan-induced paw edema test were performed along with morphological and histological analysis. DMH treatment showed a rich presence of preneoplastic lesions such as multiple plaque lesions, aberrant crypt foci, and well-characterized dysplasia. These features were reduced with piroxicam and C-phycocyanin administration. The number of apoptotic cells was featured prominently in all the groups compared with DMH. DMH treatment revealed intact high molecular weight genomic DNA with no signs of laddering/DNA fragmentation while it was noticeable significantly in control and DMH + piroxicam + C-phycocyanin. DMH group showed highest COX-2 expression and PGE(2) level in comparison with other groups. Doses of piroxicam and C-phycocyanin used in the present study were established at an anti-inflammatory range. A combination regimen of piroxicam and C-phycocyanin, rather than individually has the much greater potential for reduction of DMH-induced colon cancer development and COX-2 being the prime possible target in such chemoprevention. Source


Kansal S.K.,Panjab University | Kumari A.,Panjab University
Chemical Reviews | Year: 2014

A critical evaluation of M. oleifera, a unique plant usage as a sustainable material for water and wastewater treatment was studied. The study revealed that it can be successfully used for the removal of turbidity, metal ions, organic, and biological species from water. This biomaterial is capable of removing pollutants even at lower doses, which makes its application economical. As its sludge is not hazardous, there will be no need to develop any eco-friendly waste management method. The chemistry of water too remains unaltered with respect to its pH, alkalinity, and ionic strength. These characteristics render this plant a potential candidate for quick and inexpensive water treatment technology. The coagulation effectiveness of this plant varies depending upon the initial turbidity of the water to be treated. M. oleifera seed extract has also been assessed as a primary coagulant, cocoagulant, or secondary coagulant aid for the purification of drinking water and treatment of wastewater. Source

Discover hidden collaborations