Yanggu, South Korea
Yanggu, South Korea
SEARCH FILTERS
Time filter
Source Type

Disclosed is a probe mixture for real-time detection of target nucleic acids comprising at least one detection probe and at least one clamping probe for inhibiting amplification of wild type genes or unwanted genes, a kit using the same and a method for real-time detection of target nucleic acids using the mixture and the kit.


The present invention relates to an application of a target nucleic acid detection method using a clamping probe and a detection probe. The method of the present invention can effectively detect a small amount of variation or a specific gene sequence contained in a sample by selective amplification and detection of a trace amount of a target gene to be detected while inhibiting amplification of wild-type genes or undesired genes. Also, it is possible to determine a large number of genotypes at the same time through a melting curve analysis. In particular, the method can be used for diagnosis, prognosis and monitoring of the medical condition of a disease, treatment efficacy evaluation, and for aiding nucleic acid and protein delivery studies and so on, through a very small amount of a mutant genotype that is confirmed at a high detection sensitivity. The method of the present invention comprises a step for evaluating the detection of biomarkers such as EGFR, KRAS, NRAS etc. and the presence of mutations of biomarkers using invasive specimens such as tissues as well as non-invasive specimens (blood, urine, sputum, stool, saliva, and cells). The presence of the biomarker and mutations provides a method used for monitoring of the entire cycle of a related disease, disease prognosis and prediction, decision of disease treatment strategy, disease diagnosis/early diagnosis, disease prevention, and development of disease therapeutics.


Provided are a PNA probe for detecting nucleotide polymorphism of a target gene, a melting curve analysis method for detecting the nucleotide polymorphism of the target gene using the same, a nucleotide polymorphism analysis method of a target gene including the melting curve analysis method, and a kit for detecting the nucleotide polymorphism of the target gene containing the PNA probe. It is characterized that the PNA probe according to the present invention contains negative charge molecules. The modified PNA probe according to the present invention contains the negative charge molecules to have a high recognition ability with respect to a target DNA and a high coupling ability to the target DNA and to be rapidly dissociated by heat, such that the nucleotide polymorphism analysis may be relatively easily performed even in a heterozygous sample showing two melting curve graphs, and two or more adjacent single nucleotide polymorphisms may be simultaneously analyzed.


Provided are a PNA probe for detecting nucleotide polymorphism of a target gene, a melting curve analysis method for detecting the nucleotide polymorphism of the target gene using the same, a nucleotide polymorphism analysis method of a target gene including the melting curve analysis method, and a kit for detecting the nucleotide polymorphism of the target gene containing the PNA probe. It is characterized that the PNA probe according to the present invention contains negative charge molecules. The modified PNA probe according to the present invention contains the negative charge molecules to have a high recognition ability with respect to a target DNA and a high coupling ability to the target DNA and to be rapidly dissociated by heat, such that the nucleotide polymorphism analysis may be relatively easily performed even in a heterozygous sample showing two melting curve graphs, and two or more adjacent single nucleotide polymorphisms may be simultaneously analyzed.


The present invention relates to methods for detecting HPV using PNA detection probes. More specifically, it relates to detection probes capable of genotype specifically binding to Human Papillomavirus (hereinafter referred to as HPV) DNA, detection kits comprising them, methods for detecting HPV genotypes using them. The present invention is capable of accurately detecting 22 HPV genotypes found in cervix, diagnosing coinfection with one or more HPV genotypes, detecting the presence or absence of other HPV genotypes than the 22 genotypes, and detecting HPV genotypes with high sensitivity and specificity.


Bae Y.M.,Chungnam National University | Bae Y.M.,Korea Research Institute of Chemical Technology | Kim M.H.,Chungnam National University | Kim M.H.,Catholic University of Korea | And 8 more authors.
Journal of Controlled Release | Year: 2014

Peptide nucleic acids (PNAs) are synthetic structural analogues of DNA and RNA. They recognize specific cellular nucleic acid sequences and form stable complexes with complementary DNA or RNA. Here, we designed an oligo-aspartic acid-PNA conjugate and showed its enhanced delivery into cells with high gene correction efficiency using conventional cationic carriers, such as polyethylenimine (PEI) and Lipofectamine 2000. The negatively charged oligo-aspartic acid-PNA (Asp(n)-PNA) formed complexes with PEI and Lipofectamine, and the resulting Asp(n)-PNA/PEI and Asp (n)-PNA/Lipofectamine complexes were introduced into cells. We observed significantly enhanced cellular uptake of Asp(n)-PNA by cationic carriers and detected an active splicing correction effect even at nanomolar concentrations. We found that the splicing correction efficiency of the complex depended on the kind of the cationic carriers and on the number of repeating aspartic acid units. By enhancing the cellular uptake efficiency of PNAs, these results may provide a novel platform technology of PNAs as bioactive substances for their biological and therapeutic applications. © 2013 Elsevier B.V.


Jang H.,Panagene Inc. | Kim J.,Panagene Inc. | Choi J.-J.,Panagene Inc. | Son Y.,Panagene Inc. | Park H.,Panagene Inc.
Journal of Clinical Microbiology | Year: 2010

The detection of antiviral-resistant hepatitis B virus (HBV) mutations is important for monitoring the response to treatment and for effective treatment decisions. We have developed an array using peptide nucleic acid (PNA) probes to detect point mutations in HBV associated with antiviral resistance. PNA probes were designed to detect mutations associated with resistance to lamivudine, adefovir, and entecavir. The PNA array assay was sensitive enough to detect 102 copies/ml. The PNA array assay was able to detect mutants present in more than 5% of the virus population when the total HBV DNA concentration was greater than 104 copies/ml. We analyzed a total of 68 clinical samples by this assay and validated its usefulness by comparing results to those of the sequencing method. The PNA array correctly identified viral mutants and has high concordance (98.3%) with direct sequencing in detecting antiviral-resistant mutations. Our results showed that the PNA array is a rapid, sensitive, and easily applicable assay for the detection of antiviral-resistant mutation in HBV. Thus, the PNA array is a useful and powerful diagnostic tool for the detection of point mutations or polymorphisms. Copyright © 2010, American Society for Microbiology. All Rights Reserved.


Patent
Panagene Inc. | Date: 2010-04-14

This application relates to monomers of the general formula (I) for the preparation PNA (peptide nucleic acid) oligomers and provides method for the synthesis of both predefined sequence PNA oligomers and random sequence PNA oligomers: (I) wherein E is nitrogen or C-R; J is sulfur or oxygen; R, R1, R2, R3, R4 is independently H, halogen, alkyl, nitro, nitrile, alkoxy, halogenated alkyl, halogenated alkoxy, phenyl or halogenated phenyl, R5 is H or protected or unprotected side chain of natural or unnatural a-amino acid; and B is a natural or unnatural nucleobase, wherein when said nucleobase has an exocyclic amino function, said function is protected by protecting group which is labile to acids but stable to weak to medium bases in the presence of thiol.


Disclosed are a microRNA antisense PNA capable of inhibiting the activity or function of microRNA, a composition for inhibiting the activity or function of microRNA containing the same, a method for inhibiting the activity or function of microRNA using the same, and a method for evaluating the effectiveness thereof.


Trademark
Panagene Inc. | Date: 2012-11-27

DNA chips; Optical glass for the manufacture of laboratory equipment; Waling glass in the nature of laboratory glassware; lens glass in the nature of eyeglass lenses; ultraviolet-ray transmitting glass in the nature of laboratory glassware; infrared-ray absorbing glass in the nature of laboratory glassware; glass covered with an electrical conductor for use in the manufacture of laboratory glassware; apparatus and instruments for physics, namely, polymerase chain reaction machine, image scanner, spectrophotometer, electrophoresis apparatus for use in laboratories, hybridization chamber, and microarray of biological probes; chemistry apparatus and instruments, namely, pH meter and chromatography apparatus for use in polymer synthesis and purification; and diffraction apparatus, namely, optical lenses and prisms for microscopes. Vaccines and pharmaceutical research and development; Research of geriatric diseases; Bacteriological research; Cancer research; Pharmaceutical development; pharmaceutical research; pharmaceutical testing in the field of pharmacology; chemical-pharmaceutical testing; Medical research, namely, research of medicine, research and development of DNA chips, research of biotechnology; scientific and technical consultation in the field of biotechnology; biological research; Chemical, biochemical, biological and bacteriological research and analysis, namely, analysis of biochemistry, analysis of DNA, and research of genetics; Laboratory apparatus rental; Research and development for others in the fields of microarray; rental of research installations in the nature of laboratory apparatus and instruments; chemistry services, namely, chemical analysis.

Loading Panagene Inc. collaborators
Loading Panagene Inc. collaborators