Time filter

Source Type

Colorado Springs, CO, United States

Pravec P.,Academy of Sciences of the Czech Republic | Scheirich P.,Academy of Sciences of the Czech Republic | Vokrouhlicky D.,Charles University | Harris A.W.,4603 Orange Knoll Avenue | And 42 more authors.

Our photometric observations of 18 main-belt binary systems in more than one apparition revealed a strikingly high number of 15 having positively re-observed mutual events in the return apparitions. Our simulations of the survey showed that it cannot be due to an observational selection effect and that the data strongly suggest that poles of mutual orbits between components of binary asteroids in the primary size range 3-8. km are not distributed randomly: The null hypothesis of an isotropic distribution of the orbit poles is rejected at a confidence level greater than 99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the poles of the ecliptic. We propose that the binary orbit poles oriented preferentially up/down-right are due to either of the two processes: (i) the YORP tilt of spin axes of their parent bodies toward the asymptotic states near obliquities 0° and 180° (pre-formation mechanism) or (ii) the YORP tilt of spin axes of the primary components of already formed binary systems toward the asymptotic states near obliquities 0° and 180° (post-formation mechanism). The alternative process of elimination of binaries with poles closer to the ecliptic by dynamical instability, such as the Kozai effect due to gravitational perturbations from the Sun, does not explain the observed orbit pole concentration. This is because for close binary asteroid systems, the gravitational effects of primary's irregular shape dominate the solar-tide effect. © 2011 Elsevier Inc. Source

Hanus J.,Charles University | Broz M.,Charles University | Durech J.,Charles University | Warner B.D.,Palmer Divide Observatory | And 8 more authors.
Astronomy and Astrophysics

Context. The current number of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study the spin-vector properties of not only the whole population of main-belt asteroids, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the hierarchical clustering method (HCM) as members of ten collisional families, among which are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes. The remaining models are adopted from the DAMIT database or a few individual publications. Methods. We revised the preliminary family membership identification by the HCM according to several additional criteria: taxonomic type, color, albedo, maximum Yarkovsky semi-major axis drift, and the consistency with the size-frequency distribution of each family, and consequently we remove interlopers. We then present the spin-vector distributions for asteroidal families Flora, Koronis, Eos, Eunomia, Phocaea, Themis, Maria, and Alauda. We use a combined orbital-and spin-evolution model to explain the observed spin-vector properties of objects among collisional families. Results. In general, for studied families we observe similar trends in (ap, β) space (proper semi-major axis vs. ecliptic latitude of the spin axis): (i) larger asteroids are situated in the proximity of the center of the family; (ii) asteroids with β > 0 are usually found to the right of the family center; (iii) on the other hand, asteroids with β < 0 to the left of the center; (iv) the majority of asteroids have large pole-ecliptic latitudes (|β| â‰30); and finally (v) some families have a statistically significant excess of asteroids with β > 0 or β < 0. Our numerical simulation of the long-term evolution of a collisional family is capable of reproducing the observed spin-vector properties well. Using this simulation, we also independently constrain the age of families Flora (1.0 ± 0.5 Gyr) and Koronis (2.5-4 Gyr). © 2013 ESO. Source

Hanus J.,Charles University | Durech J.,Charles University | Broz M.,Charles University | Warner B.D.,Palmer Divide Observatory | And 7 more authors.
Astronomy and Astrophysics

Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination. Aims. Tens of thousands of sparse-in-time lightcurves from astrometric projects are publicly available. We investigate these data and use them in the lightcurve inversion method to derive new asteroid models. By having a greater number of models with known physical properties, we can gain a better insight into the nature of individual objects and into the whole asteroid population. Methods. We use sparse photometry from selected observatories from the AstDyS database (Asteroids - Dynamic Site), either alone or in combination with dense lightcurves, to determine new asteroid models by the lightcurve inversion method. We investigate various correlations between several asteroid parameters and characteristics such as the rotational state and diameter or family membership. We focus on the distribution of ecliptic latitudes of pole directions. We create a synthetic uniform distribution of latitudes, compute the method bias, and compare the results with the distribution of known models. We also construct a model for the long-term evolution of spins. Results. We present 80 new asteroid models derived from combined data sets where sparse photometry is taken from the AstDyS database and dense lightcurves are from the Uppsala Asteroid Photometric Catalogue (UAPC) and from several individual observers. For 18 asteroids, we present updated shape solutions based on new photometric data. For another 30 asteroids we present their partial models, i.e., an accurate period value and an estimate of the ecliptic latitude of the pole. The addition of new models increases the total number of models derived by the lightcurve inversion method to ∼200. We also present a simple statistical analysis of physical properties of asteroids where we look for possible correlations between various physical parameters with an emphasis on the spin vector. We present the observed and de-biased distributions of ecliptic latitudes with respect to different size ranges of asteroids as well as a simple theoretical model of the latitude distribution and then compare its predictions with the observed distributions. From this analysis we find that the latitude distribution of small asteroids (D < 30 km) is clustered towards ecliptic poles and can be explained by the YORP thermal effect while the latitude distribution of larger asteroids (D > 60 km) exhibits an evident excess of prograde rotators, probably of primordial origin. © 2011 ESO. Source

Durech J.,Charles University | Vokrouhlicky D.,Charles University | Baransky A.R.,Astronomical Observatory of Taras Shevshenko National University | Breiter S.,Adam Mickiewicz University | And 30 more authors.
Astronomy and Astrophysics

Context. The spin state of small asteroids can change on a long timescale by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, the net torque that arises from anisotropically scattered sunlight and proper thermal radiation from an irregularly-shaped asteroid. The secular change in the rotation period caused by the YORP effect can be detected by analysis of asteroid photometric lightcurves. Aims. We analyzed photometric lightcurves of near-Earth asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger with the aim to detect possible deviations from the constant rotation caused by the YORP effect. Methods. We carried out new photometric observations of the three asteroids, combined the new lightcurves with archived data, and used the lightcurve inversion method to model the asteroid shape, pole direction, and rotation rate. The YORP effect was modeled as a linear change in the rotation rate in time dω/dt. Values of dω/dt derived from observations were compared with the values predicted by theory. Results. We derived physical models for all three asteroids. We had to model Eger as a nonconvex body because the convex model failed to fit the lightcurves observed at high phase angles. We probably detected the acceleration of the rotation rate of Eger dω/dt = (1.4 ± 0.6) × 10 -8 rad d -2 (3σ error), which corresponds to a decrease in the rotation period by 4.2 ms yr -1. The photometry of Cerberus and Ra-Shalom was consistent with a constant-period model, and no secular change in the spin rate was detected. We could only constrain maximum values of |dω/dt| < 8 × 10 -9 rad d -2 for Cerberus, and |dω/dt| < 3 × 10 -8 rad d -2 for Ra-Shalom. © 2012 ESO. Source

Durech J.,Charles University | Kaasalainen M.,Tampere University of Technology | Herald D.,International Occultation Timing Association IOTA | Dunham D.,KinetX, Inc | And 8 more authors.

Asteroid sizes can be directly measured by observing occultations of stars by asteroids. When there are enough observations across the path of the shadow, the asteroid's projected silhouette can be reconstructed. Asteroid shape models derived from photometry by the lightcurve inversion method enable us to predict the orientation of an asteroid for the time of occultation. By scaling the shape model to fit the occultation chords, we can determine the asteroid size with a relative accuracy of typically ∼10%. We combine shape and spin state models of 44 asteroids (14 of them are new or updated models) with the available occultation data to derive asteroid effective diameters. In many cases, occultations allow us to reject one of two possible pole solutions that were derived from photometry. We show that by combining results obtained from lightcurve inversion with occultation timings, we can obtain unique physical models of asteroids. © 2011 Elsevier Inc. Source

Discover hidden collaborations