Time filter

Source Type

Pacific Grove, United States

Newton J.,NANOOS Northwest Association of Networked Ocean | Newton J.,University of Washington | Martin D.,NANOOS Northwest Association of Networked Ocean | Martin D.,University of Washington | And 9 more authors.
OCEANS 2012 MTS/IEEE: Harnessing the Power of the Ocean

Ocean acidification has serious implications for the economy and ecology of the Pacific Northwest United States. A combination of factors renders the Pacific coast and coastal estuaries particularly vulnerable to acidified water. The Northwest Association of Networked Ocean Observing Systems, NANOOS, the Regional Association of the United States Integrated Ocean Observing System, IOOS, is set up to deliver coastal data to serve the needs and decisions of its region. NANOOS has worked through IOOS with the NOAA Ocean Acidification Program, NOAA PMEL, academic, local, and commercial and tribal shellfish growing partners to provide existing observing assets to accommodate pCO2 and pH sensors, to deliver data streams from these and other providers, including that from sensors in shellfish hatcheries, and to network this capacity regionally and nationally. This increase in data access regarding OA is of value to scientists, managers, educators, and shellfish growers who are especially appreciative of the near real-time readouts of the data, upon which to make hatchery and remote setting decisions. This is a regional example of NANOOS and IOOS contributions to societal impacts from ocean acidification. © 2012 IEEE. Source

Barton A.,Whiskey Creek Shellfish Hatchery | Waldbusser G.G.,Oregon State University | Feely R.A.,National Oceanic and Atmospheric Administration | Weisberg S.B.,Southern California Coastal Water Research Project Authority | And 8 more authors.

In 2007, the US west coast shellfish industry began to feel the effects of unprecedented levels of larval mortality in commercial hatcheries producing the Pacific oyster Crassostrea gigas. Subsequently, researchers at Whiskey Creek Shellfish Hatchery, working with academic and government scientists, showed a high correlation between aragonite saturation state (Ωarag) of inflowing seawater and survival of larval groups, clearly linking increased CO2 to hatchery failures. This work led the Pacific Coast Shellfish Growers Association (PCSGA) to instrument shellfish hatcheries and coastal waters, establishing a monitoring network in collaboration with university researchers and the US Integrated Ocean Observing System. Analytical developments, such as the ability to monitor Ωarag in real time, have greatly improved the industry’s understanding of carbonate chemistry and its variability and informed the development of commercial-scale water treatment systems. These treatment systems have generally proven effective, resulting in billions of additional oyster larvae supplied to Pacific Northwest oyster growers. However, significant challenges remain, and a multifaceted approach, including selective breeding of oyster stocks, expansion of hatchery capacity, continued monitoring of coastal water chemistry, and improved understanding of biological responses will all be essential to the survival of the US west coast shellfish industry. Source

Cheney D.,Pacific Shellfish Institute | Langan R.,University of New Hampshire | Heasman K.,Cawthron Institute
Marine Technology Society Journal

Marine shellfish or bivalve aquaculture accounts for a large fraction of the total world production of cultured seafood, with production trailing only freshwater fish (mainly carps and similar species) and aquatic plants. However, growth of nearshore bivalve aquaculture is increasingly constrained by space, economics, human health, and environmental concerns. Offshore or open ocean waters offer a tremendous potential for expansion of the shellfish farming. Developments to date indicate that it is feasible to install, to maintain, and to operate bivalve culture systems in high-energy offshore waters with production rates often equaling or exceeding nearshore environments. Although production to date is limited and a number of technical, operational, economic, and social challenges must be addressed, a number of small to large-scale bivalve culture systems are in development or production. This article reviews the current production of bivalve shellfish, describes characteristics through case examples of offshore shellfish culture system, and assesses the future potential of this farming method. Source

Cheney D.P.,Pacific Shellfish Institute
Journal of the World Aquaculture Society

Shellfish aquaculture has had a long tradition in Asia, Europe, and the western USA, but it is only within the past century that significant cultural and handling practices have been identified, developed, and introduced to improve and enhance shellfish food quality. Shellfish are now being marketed with an emphasis on product quality, product variety, reduced human health risk, and improved ease of preparation. Aquacultured bivalve shellfish products must now have the food quality characteristics of other high-quality seafood products and must meet accepted standards of taste, color, texture, and odor. This review summarizes current efforts within the shellfish industry to improve the food quality of aquacultured bivalve shellfish in the following focus areas: (i) genetic selection and controlled breeding; (ii) production tools; (iii) food safety protection and enhancement; and (iv) processing and creative marketing efforts, with major emphasis on the US shellfish aquaculture sector. © Copyright by the World Aquaculture Society 2010. Source

Ng T.Y.-T.,Hong Kong University of Science and Technology | Ng T.Y.-T.,McMaster University | Chuang C.-Y.,Hong Kong University of Science and Technology | Chuang C.-Y.,Texas A&M University | And 4 more authors.
Marine Ecology Progress Series

Oysters can accumulate cadmium (Cd) in very high concentrations in their tissues and there is now increasing concern for the seafood safety of farmed oysters worldwide. Bioaccumulation and biokinetics of Cd (dietary assimilation, uptake from the dissolved phase, and efflux) were measured in different populations of Pacific oyster Crassostrea gigas collected along the west coast of the USA in 2 different seasons. Triploid juvenile oysters were first transplanted to 5 Washington sites and 1 Oregon site for 3 mo, then transported back to the laboratory for tissue Cd measurements and bio-kinetic experiments. A second group of seed oysters was collected from California and Washington for additional analysis. Oysters from all sites had Cd concentrations lower than the food standard limit and there was spatial difference in tissue Cd concentrations. A significant fraction of Cd was associated with metallothionein-like proteins, implying that the oysters can detoxify Cd by induction of metallothionein. The difference in Cd dietary assimilation (using diatoms as a food source) and efflux in oysters transplanted to different locations was not significant. The uptake rate constants for Cd from the dissolved phase, however, differed markedly among the transplanted populations, and appeared to be affected by the oysters' clearance rate, depending on the population. This uptake rate was also negatively affected by the size of oysters. Dietary assimilation of Cd was comparable at diatom food concentrations below 2 to 5 mg l1 , and was lower with ingested sediments than with diatoms. Measurements of Cd kinetics in different populations of Pacific oysters under a variety of environmental conditions provide an insight into the Cd accumulation in this commercially important species. Copyright © 2010 Inter-Research. Source

Discover hidden collaborations