Time filter

Source Type

Ansan, South Korea

Ra K.,Marine Environments and Conservation Research Division | Lee C.M.,Ocean Policy Institute | Noh J.-H.,Marine Ecosystem Research Division | Park H.-S.,Pacific Ocean Research Center | And 3 more authors.
Ocean and Polar Research | Year: 2013

Heavy metals in the mangrove sediments of Chuuk and Kosrae, Federated States of Micronesia were analyzed to examine the pollution levels of heavy metals using enrichment factor (EF) and pollution load index (PLI). The mean concentrations of Cr, Ni, Cu, Zn, As, Cd and Pb in surface mangrove sediments were 642, 125, 46.9, 149, 15.6, 0.14 and 8.55 μg, respectively. Kosrae mangrove sediments showed the highest concentrations of Cr and Ni while Chuuk contains more of other metals such as Cu, Zn, As, Cd and Pb. Compared to those from other mangrove regions of the world, Cr, Ni and As levels in mangrove sediments from Micronesia were at higher levels whereas Cu, Zn, Cd and Pb were at lower to median levels. In core sediment of Chuuk, metal concentrations in the upper part were higher than those in the lower part. Based on the EF and PLI values, As is evaluated as the heaviest contaminant in the surface sediment from Micronesia whilst other metals (Cr, Ni, Cu, Zn, Cd and Pb) are present at slightly lesser levels.

Choi D.H.,Marine Biotechnology Research Division | Noh J.H.,Marine Ecosystem Research Division | Ahn S.M.,Marine Ecosystem Research Division | Lee C.M.,Ocean Policy Institute | And 4 more authors.
Ocean and Polar Research | Year: 2013

In order to understand phytoplankton and bacterial distribution in tropical coral reef ecosystems in relation to the mangrove community, their biomass and activities were measured in the sea waters of the Chuuk and the Kosrae lagoons located in Micronesia. Chlorophyll a and bacterial abundance showed maximal values in the seawater near the mangrove forests, and then steeply decreased as the distance increased from the mangrove forests, indicating that environmental conditions for these microorganisms changed greatly in lagoon waters. Together with chlorophyll a, abundance of Synechococcus and phototrophic picoeukaryotes and a variety of indicator pigments for dinoflagellates, diatoms, green algae and cryptophytes also showed similar spatial distribution patterns, suggesting that phytoplankton assemblages respond to the environmental gradient by changing community compositions. In addition, primary production and bacterial production were also highest in the bay surrounded by mangrove forest and lowest outside of the lagoon. These results suggest that mangrove waters play an important role in energy production and nutrient cycling in tropical coasts, undoubtedly receiving large inputs of organic matter from shore vegetation such as mangroves. However, the steep decrease of biomass and production of phytoplankton and heterotrophic bacteria within a short distance from the bay to the level of oligotrophic waters indicates that the effect of mangrove waters does not extend far away.

Kang T.,KIOST | Kang T.,Inha University | Min W.-G.,Dokdo Research Center | Rho H.S.,Dokdo Research Center | And 2 more authors.
Journal of the Marine Biological Association of the United Kingdom | Year: 2014

This study aimed to determine the potential impact of an oil spill on intertidal meiofauna at a clean, sandy beach in Korea. This objective was accomplished by examining changes in the structure of meiofaunal assemblages after a controlled oil spill of different concentrations on the beach. The concentration of total petroleum hydrocabon (TPH) in the experimental plots after oil application was expectedly higher for the first 4 d compared to before oil application. The TPH concentrations decreased at a faster rate in the first 4 d, and then progressively. The sharp decline in meiofaunal density in the experimental plots during the first 4 d after the spill might be attributed to the short-term toxic effects of the oil. This suggestion is supported by a significant negative interaction of the TPH on meiofaunal density during the study period. The period of low density of meiofauna also coincided with the maximum concentration of TPH in the sediment. The multivariate indices proved to be highly efficient, showing that samples contaminated with oil had high TPH concentrations, and were partially separated in terms of meiofaunal communities from samples before oil application or samples with low TPH concentrations. The structure of the meiofaunal communities in the experimental plots was similar before and 1 month after oil application. However, the density of meiofauna sharply decreased immediately after oil application in the experiment plots. Furthermore, the meiofaunal density recovered slowly as time passed. © Marine Biological Association of the United Kingdom, 2013.

Lee D.-W.,Pacific Ocean Research Center | Abu Affan M.D.,King Abdulaziz University | Lee H.-Y.,Seowon University | Ma C.W.,Korea University | And 3 more authors.
Ocean and Polar Research | Year: 2013

One of the most important challenges facing the Spirulina mass cultivation industry is to find a way to reduce the high production costs involved in production. Although the most commercial medium (Zarrouk's medium) for Spirulina cultivation is too expensive to use, it contains higher amount of NaHCO3 (16.80 g L-1), trace metals and vitamin solutions. The purpose of this study was to increase the efficiency of Spirulina platensis biomass production by developing a low-cost culture medium at an isolated tropical island such as Chuuk State, Federated States of Micronesia (FSM). This study set out to formulate a lowcost medium for the culture of S. platensis, by substituting nutrients of Zarrouk's medium using fertilizer- grade urea and soil extract with a different concentration of carbon source under natural weather condition. In order to select a low-cost culture medium of S. platensis, 10 culture media were prepared with different concentrations of nitrogen (urea and NaNO3) and NaHCO3. The highest maximum specific growth rate (μmax) and mass production were 0.50 day-1 and 1.05 g L-1 in modified medium (NaHCO3 7.50 g L-1, urea 2.00 g L-1 without NaNO3) among all the synthesized media. Protein (56.14%) and carbohydrate (16.21%) concentrations of the lyophilized standard samples were estimated with highest concentration of glutamic acid (14.93%). This study revealed that the use of a low concentration of urea and NaHCO3 with soil extract was an affordable medium for natural mass cultivation in the FSM.

Kim T.,Pacific Ocean Research Center | Choi Y.-U.,Pacific Ocean Research Center | Choi J.-K.,Korea Ocean Satellite Center | Kwon M.-S.,Ocean Policy Institute | Park H.-S.,Pacific Ocean Research Center
Ocean and Polar Research | Year: 2013

The aim of this study is to suggest an optimal survey method for coastal habitat monitoring around Weno Island in Chuuk Atoll, Federated States of Micronesia (FSM). This study was carried out to compare and analyze differences between in situ survey (PHOTS) and high spatial satellite imagery (Worldview-2) with regard to the coastal habitat distribution patterns of Weno Island. The in situ field data showed the following coverage of habitat types: sand 42.4%, seagrass 26.1%, algae 14.9%, rubble 8.9%, hard coral 3.5%, soft coral 2.6%, dead coral 1.5%, others 0.1%. The satellite imagery showed the following coverage of habitat types: sand 26.5%, seagrass 23.3%, sand + seagrass 12.3%, coral 18.1%, rubble 19.0%, rock 0.8% (Accuracy 65.2%). According to the visual interpretation of the habitat map by in situ survey, seagrass, sand, coral and rubble distribution were misaligned compared with the satellite imagery. While, the satellite imagery appear to be a plausible results to identify habitat types, it could not classify habitat types under one pixel in images, which in turn overestimated coral and rubble coverage, underestimated algae and sand. The differences appear to arise primarily because of habitat classification scheme, sampling scale and remote sensing reflectance. The implication of these results is that satellite imagery analysis needs to incorporate in situ survey data to accurately identify habitat. We suggest that satellite imagery must correspond with in situ survey in habitat classification and sampling scale. Subsequently habitat sub-segmentation based on the in situ survey data should be applied to satellite imagery.

Discover hidden collaborations