Portland, OR, United States
Portland, OR, United States

Time filter

Source Type

Patent
Pacific Light Technologies | Date: 2016-08-01

A semiconductor structure has a nano-crystalline core comprising a first semiconductor material and a nano-crystalline shell comprising a second, different semiconductor material at least partially surrounding the nano-crystalline core. Either one, but not both, of the core and shell are based on cadmium-containing semiconductor materials.


Patent
Pacific Light Technologies | Date: 2016-12-05

A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.


Patent
Pacific Light Technologies | Date: 2015-05-14

Squared-off semiconductor coatings for quantum dots (QDs) and the resulting quantum dot materials are described. In an example, a semiconductor structure includes a quantum dot structure having an outermost surface. A crystalline semiconductor coating is disposed on and completely surrounds the outermost surface of the quantum dot structure. The crystalline semiconductor coating has a geometry with squared-off ends.


Patent
Pacific Light Technologies | Date: 2015-01-16

Irregular large volume semiconductor coatings for quantum dots (QDs) and the resulting quantum dot materials are described. In an example, a semiconductor structure includes a quantum dot structure having an outermost surface. A crystalline semiconductor coating is disposed on and completely surrounds the outermost surface of the quantum dot structure. The crystalline semiconductor coating has an irregular outermost geometry.


Patent
Pacific Light Technologies | Date: 2014-07-15

Alloyed nanocrystals and quantum dots having alloyed nanocrystals are described. In an example, a quantum dot includes an alloyed Group II-VI nanocrystalline core. The quantum dot also includes a Group II-VI nanocrystalline shell having a semiconductor material composition different from the alloyed Group II-VI nanocrystalline core. The Group II-VI nanocrystalline shell is bonded to and completely surrounds the alloyed Group II-VI nanocrystalline core.


Patent
Pacific Light Technologies | Date: 2016-07-01

A semiconductor structure includes a nanocrystalline core comprising a first semiconductor material having a first bandgap, and a nanocrystalline shell comprising a second semiconductor material different than the first semiconductor material at least partially surrounding the nanocrystalline core, the second semiconductor material having a second bandgap greater than the first bandgap.


Semiconductor structures having a nanocrystalline core and nanocrystalline shell pairing compositional transition layers are described. In an example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A compositional transition layer is disposed between, and in contact with, the nanocrystalline core and nanocrystalline shell and has a composition intermediate to the first and second semiconductor materials. In another example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A nanocrystalline outer shell surrounds the nanocrystalline shell and is composed of a third semiconductor material. A compositional transition layer is disposed between, and in contact with, the nanocrystalline shell and the nanocrystalline outer shell and has a composition intermediate to the second and third semiconductor materials.


Semiconductor structures having a nanocrystalline core and nanocrystalline shell pairing with compositional transition layers are described. In an example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A compositional transition layer is disposed between, and in contact with, the nanocrystalline core and nanocrystalline shell and has a composition intermediate to the first and second semiconductor materials. In another example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A nanocrystalline outer shell surrounds the nanocrystalline shell and is composed of a third semiconductor material. A compositional transition layer is disposed between, and in contact with, the nanocrystalline shell and the nanocrystalline outer shell and has a composition intermediate to the second and third semiconductor materials. In the examples, an insulator coating surrounds and encapsulates the structure.


Patent
Pacific Light Technologies | Date: 2015-10-21

Networks of semiconductor structures with fused insulator coatings and methods of fabricating networks of semiconductor structures with fused insulator coatings are described. In an example, a semiconductor structure includes an insulator network. A plurality of discrete semiconductor nanocrystals is disposed in the insulator network. Each of the plurality of discrete semiconductor nanocrystals is spaced apart from one another by the insulator network.


Nano-crystalline core and nano-crystalline shell pairings having group I-III-VI material nano-crystalline cores, and methods of fabricating nano-crystalline core and nano-crystalline shell pairings having group I-III-VI material nano-crystalline cores, are described. In an example, a semiconductor structure includes a nano-crystalline core composed of a group I-III-VI semiconductor material. A nano-crystalline shell composed of a second, different, group I-III-VI semiconductor material at least partially surrounds the nano-crystalline core.

Loading Pacific Light Technologies collaborators
Loading Pacific Light Technologies collaborators