Entity

Time filter

Source Type

Portland, OR, United States

Kurtin J.N.,Pacific Light Technologies
Proceedings of SPIE - The International Society for Optical Engineering | Year: 2013

Quantum dots (QDs) are rare-earth free downconverters which have been demonstrated as ideal phosphor replacement materials from an optical perspective, with the potential to enable a 30% or larger improvement in LED efficiency as compared to today's rare-earth phosphors at the same quality of light (higher CRI implementations see larger improvements). However to date QDs have demonstrated less than ideal reliability under standard LED chip conditions, prohibiting cost-effective integration into conventional luminaire formats. This talk will discuss the present status and future prospects of QDs as LED downconverters, including recent advances in connecting quantum dot structure to high temperature and high intensity performance, an updated look at QD reliability, and the limits of QDs in a variety of phosphor configurations. © 2013 SPIE. Source


Patent
Pacific Light Technologies | Date: 2015-10-21

Networks of semiconductor structures with fused insulator coatings and methods of fabricating networks of semiconductor structures with fused insulator coatings are described. In an example, a semiconductor structure includes an insulator network. A plurality of discrete semiconductor nanocrystals is disposed in the insulator network. Each of the plurality of discrete semiconductor nanocrystals is spaced apart from one another by the insulator network.


Semiconductor structures having a nanocrystalline core and nanocrystalline shell pairing with compositional transition layers are described. In an example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A compositional transition layer is disposed between, and in contact with, the nanocrystalline core and nanocrystalline shell and has a composition intermediate to the first and second semiconductor materials. In another example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A nanocrystalline outer shell surrounds the nanocrystalline shell and is composed of a third semiconductor material. A compositional transition layer is disposed between, and in contact with, the nanocrystalline shell and the nanocrystalline outer shell and has a composition intermediate to the second and third semiconductor materials. In the examples, an insulator coating surrounds and encapsulates the structure.


Semiconductor structures having a nanocrystalline core and nanocrystalline shell pairing compositional transition layers are described. In an example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A compositional transition layer is disposed between, and in contact with, the nanocrystalline core and nanocrystalline shell and has a composition intermediate to the first and second semiconductor materials. In another example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A nanocrystalline outer shell surrounds the nanocrystalline shell and is composed of a third semiconductor material. A compositional transition layer is disposed between, and in contact with, the nanocrystalline shell and the nanocrystalline outer shell and has a composition intermediate to the second and third semiconductor materials.


Nano-crystalline core and nano-crystalline shell pairings having group I-III-VI material nano-crystalline cores, and methods of fabricating nano-crystalline core and nano-crystalline shell pairings having group I-III-VI material nano-crystalline cores, are described. In an example, a semiconductor structure includes a nano-crystalline core composed of a group I-III-VI semiconductor material. A nano-crystalline shell composed of a second, different, group I-III-VI semiconductor material at least partially surrounds the nano-crystalline core.

Discover hidden collaborations