OZ Biosciences

Marseille, France

OZ Biosciences

Marseille, France
SEARCH FILTERS
Time filter
Source Type

Sapet C.,OZ Biosciences | Laurent N.,OZ Biosciences | de Chevigny A.,French National Center for Scientific Research | Le Gourrierec L.,OZ Biosciences | And 3 more authors.
BioTechniques | Year: 2017

Primary neural stem cells (NSCs) can be cultivated and differentiated in vitro but are difficult to transfect using conventional methods. We describe a simple and rapid magnetofectionbased method suitable for the lab bench as well as for high-throughput projects. Our method yields high transfection efficiency and can be used for deciphering the genetic control of neural cell differentiation. © 2017, Eaton Publishing Company. All rights reserved.


Sapet C.,OZ Biosciences | Formosa C.,OZ Biosciences | Sicard F.,OZ Biosciences | Bertosio E.,OZ Biosciences | And 2 more authors.
Therapeutic Delivery | Year: 2013

Background: 3D matrices are widely used as cell growth supports in basic research, regenerative medicine or cell-based drug assays. In order to genetically manipulate cells cultured within 3D matrices, two novel non-viral transfection reagents allowing preparation of matrices for in situ cell transfection were evaluated. Results: Two lipidic formulations, 3D-Fect™ and 3D-FectIN™, were assessed for their ability to transfect cells cultured within 3D solid scaffolds and 3D hydrogels, respectively. These reagents showed good compatibility with the most widespread types of matrices and enabled transfection of a wide range of mammalian cells of various origins. Classical cell lines, primary cells and stem cells were thus genetically modified while colonizing their growth support. Importantly, this in situ strategy alleviated the need to manipulate cells before seeding them. Conclusion: Results presented here demonstrated that 3D-Fect and 3D-FectIN reagents for 3D transfection are totally compatible with cells and do not impair matrix properties. 3D-Fect and 3D-FectIN, therefore, provide valuable tools for achieving localized and sustained transgene expression and should find versatile applications in fundamental research, regenerative medicine and cell-based drug assays. © 2013 Future Science Ltd.


Plank C.,TU Munich | Zelphati O.,OZ Biosciences | Mykhaylyk O.,TU Munich
Advanced Drug Delivery Reviews | Year: 2011

Nucleic acids carry the building plans of living systems. As such, they can be exploited to make cells produce a desired protein, or to shut down the expression of endogenous genes or even to repair defective genes. Hence, nucleic acids are unique substances for research and therapy. To exploit their potential, they need to be delivered into cells which can be a challenging task in many respects. During the last decade, nanomagnetic methods for delivering and targeting nucleic acids have been developed, methods which are often referred to as magnetofection. In this review we summarize the progress and achievements in this field of research. We discuss magnetic formulations of vectors for nucleic acid delivery and their characterization, mechanisms of magnetofection, and the application of magnetofection in viral and nonviral nucleic acid delivery in cell culture and in animal models. We summarize results that have been obtained with using magnetofection in basic research and in preclinical animal models. Finally, we describe some of our recent work and end with some conclusions and perspectives. © 2011 Elsevier B.V.


Laurent N.,OZ Biosciences | Sapet C.,OZ Biosciences | Le Gourrierec L.,OZ Biosciences | Bertosio E.,OZ Biosciences | Zelphati O.,OZ Biosciences
Therapeutic Delivery | Year: 2011

In recent years, gene therapy has received considerable interest as a potential method for the treatment of numerous inherited and acquired diseases. However, successes have so far been hampered by several limitations, including safety issues of viral-based nucleic acid vectors and poor in vivo efficiency of nonviral vectors. Magnetofection™ has been introduced as a novel and powerful tool to deliver genetic material into cells. This technology is defined as the delivery of nucleic acids, either 'naked' or packaged (as complexes with lipids or polymers, and viruses) using magnetic nanoparticles under the guidance of an external magnetic field. This article first discusses the principles of the Magnetofection technology and its benefits as compared with standard transfection methods. A number of relevant examples of its use, both in vitro and in vivo, will then be highlighted. Future trends in the development of new magnetic nanoparticle formulations will also be outlined. © 2011 Future Science Ltd.


Sapet C.,OZ Biosciences | Laurent N.,OZ Biosciences | de Chevigny A.,French National Center for Scientific Research | le Gourrierec L.,OZ Biosciences | And 3 more authors.
BioTechniques | Year: 2011

Primary neural stem cells (NSCs) can be cultivated and differentiated in vitro but are difficult to transfect using conventional methods. We describe a simple and rapid magnetofection-based method suitable for the lab bench as well as for high-throughput projects. Our method yields high transfection efficiency and can be used for deciphering the genetic control of neural cell differentiation.


Orlando C.,Institute for Experimental Treatment of Cystic Fibrosis | Orlando C.,University of Zürich | Castellani S.,University of Foggia | Mykhaylyk O.,TU Munich | And 6 more authors.
Journal of Gene Medicine | Year: 2010

Background: Lentiviral (LV) vectors are able to only slowly and inefficiently transduce nondividing cells such as those of the airway epithelium. To address this issue, we have exploited the magnetofection technique in in vitro models of airway epithelium. Methods: Magnetofectins were formed by noncovalent interaction between LV particles and polycation-coated iron oxide nanoparticles. Efficiency of LV-mediated transduction (as evaluated through green fluorescent protein (GFP) expression by cytofluorimetric analysis) was measured in bronchial epithelial cells in the presence or absence of a magnetic field. Cytotoxicity was evaluated by lactate dehydrogenase (LDH) release; cell monolayer integrity by measurement of transepithelial resistance (TER) and evaluation of correct zonula occludens-1 (ZO-1) localization at tight junctions (TJs) by immunofluorescence and confocal microscopy. Results: In nonpolarized cells, magnetofectins enhanced LV-mediated transduction at multiplicity of infection (MOI) of 50 up to 3.9-fold upon a 24-h incubation, to levels that approached those achieved at MOI of 200 for LV alone, in the presence or absence of the magnetic field. Magnetofection significantly increased the percentage of transduced cells up to 186-fold already after 15 min of incubation. In polarized cells, magnetofection increased GFP+ cells up to 24-fold compared to LV alone. Magnetofection did not enhance LDH release and slightly altered TER but not ZO-1 localization at the TJs. Conclusions: We conclude that magnetofection can facilitate in vitro LV-mediated transduction of airway epithelial cells, in the absence of overt cytotoxicity and maintaining epithelial integrity, by lowering the necessary vector dose and reducing the incubation time required to achieve efficient transduction. Copyright © 2010 John Wiley & Sons, Ltd.


Sapet C.,Oz Biosciences | Laurent N.,Oz Biosciences | Gourrierec L.L.,Oz Biosciences | Augier S.,Oz Biosciences | Zelphati O.,Oz Biosciences
Annales de Biologie Clinique | Year: 2010

Gene therapy offers exciting opportunities for the treatment of innate or acquired genetic diseases. However, there is still a need for a safe and efficient strategy to deliver nucleic acids into cells while overcoming the current limitations faced with standard viral vectors. Intensive researches have been carried out over the past decade, focusing both on viral and non-viral (i.e. physical or chemical) strategies. Of these numerous attempts, magnetofection, defined as the combination of nucleic acid vectors with magnetic nanoparticles, holds the promise to achieve high transfection efficiency with reduced toxicity by magnetically focusing the genetic material to be delivered on its cellular target. In vitro as well as in vivo results already demonstrated that this strategy may become a valuable tool towards practical gene therapy.


Sapet C.,OZ Biosciences | Pellegrino C.,French Institute of Health and Medical Research | Laurent N.,OZ Biosciences | Sicard F.,OZ Biosciences | Zelphati O.,OZ Biosciences
Pharmaceutical Research | Year: 2012

Purpose: Adenoviruses are among the most powerful gene delivery systems. Even if they present low potential for oncogenesis, there is still a need for minimizing widespread delivery to avoid deleterious reactions. In this study, we investigated Magnetofection efficiency to concentrate and guide vectors for an improved targeted delivery. Method: Magnetic nanoparticles formulations were complexed to a replication defective Adenovirus and were used to transduce cells both in vitro and in vivo. A new integrated magnetic procedure for cell sorting and genetic modification (i-MICST) was also investigated. Results: Magnetic nanoparticles enhanced viral transduction efficiency and protein expression in a dose-dependent manner. They accelerated the transduction kinetics and allowed non-permissive cells infection. Magnetofection greatly improved adenovirus-mediated DNA delivery in vivo and provided a magnetic targeting. The i-MICSTresults established the efficiency of magnetic nanoparticles assisted viral transduction within cell sorting columns. Conclusion: The results showed that the combination of Magnetofection and Adenoviruses represents a promising strategy for gene therapy. Recently, a new integrated method to combine clinically approved magnetic cell isolation devices and genetic modification was developed. In this study, we validated that magnetic cell separation and adenoviral transduction can be accomplished in one reliable integrated and safe system. © Springer Science+Business Media, LLC 2011.


A subject of the present invention is the development of a novel family of cationic lipids and their use as vectors for in vitro, ex vivo and in 5 vivo delivery of biologically active agents.


Trademark
Oz Biosciences | Date: 2015-10-14

Chemical products for use in industry, science, photography, as well as in agriculture, horticulture and forestry; chemical reagents other than for medical or veterinary use; biochemical, chemical and biological reagents for use in scientific research, in industry and science; chemical, biochemical and biological products for scientific, medical or pharmaceutical research. Pharmaceutical and veterinary products; sanitary products for medical purposes; dietetic food and substances for medical or veterinary use; food for babies; food supplements for humans and animals; materials for dressings; material for dental fillings and dental impressions; disinfectants; products for destroying vermin; fungicides, herbicides; bath preparations for medical use; sanitary panties or napkins; chemical preparations for medical or pharmaceutical use; medicinal herbs; herbal teas; parasiticides; alloys of precious metals for dental use; chemical, biochemical and biological products for medical or pharmaceutical use. Evaluations and assessments in the fields of science and technology provided by engineers; scientific and technical research; research and development of new products for others; technical project studies; scientific research for medical purposes; research and development of new products for applications in life sciences, in the pharmaceutical, parapharmaceutical and veterinary fields; research in biology, bacteriology, chemistry, cosmetology and physics.

Loading OZ Biosciences collaborators
Loading OZ Biosciences collaborators