Time filter

Source Type

Rolls E.T.,Oxford Center for Computational Neuroscience | Rolls E.T.,University of Warwick
Cortex | Year: 2015

The concept of a (single) limbic system is shown to be outmoded. Instead, anatomical, neurophysiological, functional neuroimaging, and neuropsychological evidence is described that anterior limbic and related structures including the orbitofrontal cortex and amygdala are involved in emotion, reward valuation, and reward-related decision-making (but not memory), with the value representations transmitted to the anterior cingulate cortex for action-outcome learning. In this 'emotion limbic system' a computational principle is that feedforward pattern association networks learn associations from visual, olfactory and auditory stimuli, to primary reinforcers such as taste, touch, and pain. In primates including humans this learning can be very rapid and rule-based, with the orbitofrontal cortex overshadowing the amygdala in this learning important for social and emotional behaviour. Complementary evidence is described showing that the hippocampus and limbic structures to which it is connected including the posterior cingulate cortex and the fornix-mammillary body-anterior thalamus-posterior cingulate circuit are involved in episodic or event memory, but not emotion. This 'hippocampal system' receives information from neocortical areas about spatial location, and objects, and can rapidly associate this information together by the different computational principle of autoassociation in the CA3 region of the hippocampus involving feedback. The system can later recall the whole of this information in the CA3 region from any component, a feedback process, and can recall the information back to neocortical areas, again a feedback (to neocortex) recall process. Emotion can enter this memory system from the orbitofrontal cortex etc., and be recalled back to the orbitofrontal cortex etc. during memory recall, but the emotional and hippocampal networks or 'limbic systems' operate by different computational principles, and operate independently of each other except insofar as an emotional state or reward value attribute may be part of an episodic memory. © 2013 Elsevier Ltd.


Kesner R.P.,University of Utah | Rolls E.T.,Oxford Center for Computational Neuroscience | Rolls E.T.,University of Warwick
Neuroscience and Biobehavioral Reviews | Year: 2015

The aims of the paper are to update Rolls' quantitative computational theory of hippocampal function and the predictions it makes about the different subregions (dentate gyrus, CA3 and CA1), and to examine behavioral and electrophysiological data that address the functions of the hippocampus and particularly its subregions. Based on the computational proposal that the dentate gyrus produces sparse representations by competitive learning and via the mossy fiber pathway forces new representations on the CA3 during learning (encoding), it has been shown behaviorally that the dentate gyrus supports spatial pattern separation during learning. Based on the computational proposal that CA3-CA3 autoassociative networks are important for episodic memory, it has been shown behaviorally that the CA3 supports spatial rapid one-trial learning, learning of arbitrary associations where space is a component, pattern completion, spatial short-term memory, and spatial sequence learning by associations formed between successive items. The concept that the CA1 recodes information from CA3 and sets up associatively learned backprojections to neocortex to allow subsequent retrieval of information to neocortex, is consistent with findings on consolidation. Behaviorally, the CA1 is implicated in processing temporal information as shown by investigations requiring temporal order pattern separation and associations across time; and computationally this could involve associations in CA1 between object and timing information that have their origins in the lateral and medial entorhinal cortex respectively. The perforant path input from the entorhinal cortex to DG is implicated in learning, to CA3 in retrieval from CA3, and to CA1 in retrieval after longer time intervals ("intermediate-term memory") and in the temporal sequence memory for objects. © 2014 Elsevier Ltd.


Rolls E.T.,Oxford Center for Computational Neuroscience
Proceedings of the Nutrition Society | Year: 2012

Complementary neuronal recordings and functional neuroimaging in human subjects show that the primary taste cortex in the anterior insula provides separate and combined representations of the taste, temperature and texture (including fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex (OFC), these sensory inputs are for some neurons combined by learning with olfactory and visual inputs, and these neurons encode food reward in that they only respond to food when hungry, and in that activations correlate with subjective pleasantness. Cognitive factors, including word-level descriptions, and attention modulate the representation of the reward value of food in the OFC and a region to which it projects, the anterior cingulate cortex. Further, there are individual differences in the representation of the reward value of food in the OFC. It is argued that over-eating and obesity are related in many cases to an increased reward value of the sensory inputs produced by foods, and their modulation by cognition and attention that over-ride existing satiety signals. It is proposed that control of all rather than one or several of these factors that influence food reward and eating may be important in the prevention and treatment of overeating and obesity. © The Author 2012.


Rolls E.T.,Oxford Center for Computational Neuroscience
International Journal of Obesity | Year: 2011

Complementary neuronal recordings and functional neuroimaging in humans, show that the primary taste cortex in the anterior insula provides separate and combined representations of the taste, temperature and texture (including fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex (OFC), these sensory inputs are for some neurons combined by learning with olfactory and visual inputs, and these neurons encode food reward in that they only respond to food when hungry, and in that activations correlate with subjective pleasantness. Cognitive factors, including word-level descriptions, and attention, modulate the representation of the reward value of food in the OFC. Further, there are individual differences in the representation of the reward value of food in the OFC. It is argued that overeating and obesity are related in many cases to an increased reward value of the sensory inputs produced by foods, and their modulation by cognition and attention, which overrides existing satiety signals. It is proposed that control of all rather than one or several of these factors that influence food reward and eating may be important in the prevention and treatment of overeating and obesity. © 2011 Macmillan Publishers Limited All rights reserved.


Rolls E.T.,Oxford Center for Computational Neuroscience
Pharmacology Biochemistry and Behavior | Year: 2012

A computational neuroscience approach to the symptoms of obsessive-compulsive disorder based on a stochastic neurodynamical framework is described. An increased depth in the basins of attraction of attractor neuronal network states in the brain makes each state too stable, so that it tends to remain locked in that state, and cannot easily be moved on to another state. It is suggested that the different symptoms that may be present in obsessive - compulsive disorder could be related to changes of this type in different brain regions. In integrate-and-fire network simulations, an increase in the NMDA and/or AMPA receptor conductances, which increases the depth of the attractor basins, increases the stability of attractor networks, and makes them less easily moved on to another state by a new stimulus. Increasing GABA-receptor activated currents can partly reverse this overstability. There is now some evidence for overactivity in glutamate transmitter systems in obsessive-compulsive disorder, and the hypothesis presented here shows how some of the symptoms of obsessive-compulsive disorder could be produced by the increase in the stability of attractor networks that is produced by increased glutamatergic activity. In schizophrenia, a reduction of the firing rates of cortical neurons caused for example by reduced NMDA receptor function, present in schizophrenia, can lead to instability of the high firing rate attractor states that normally implement short-term memory and attention, contributing to the cognitive and negative symptoms of schizophrenia. Reduced cortical inhibition caused by a reduction of GABA neurotransmission, present in schizophrenia, can lead to instability of the spontaneous firing states of cortical networks, leading to a noise-induced jump to a high firing rate attractor state even in the absence of external inputs, contributing to the positive symptoms of schizophrenia. © 2011 Elsevier Inc. All rights reserved.


Rolls E.T.,Oxford Center for Computational Neuroscience
Frontiers in Human Neuroscience | Year: 2013

Cognition can influence emotion by biasing neural activity in the first cortical region in which the reward value and subjective pleasantness of stimuli is made explicit in the representation, the orbitofrontal cortex. The same effect occurs in a second cortical tier for emotion, the anterior cingulate cortex. Similar effects are found for selective attention, to for example the pleasantness vs the intensity of stimuli, which modulates representations of reward value and affect in the orbitofrontal and anterior cingulate cortices. The mechanisms for the effects of cognition and attention on emotion are top-down biased competition and top-down biased activation. Affective and mood states can in turn influence memory and perception, by backprojected biasing influences. Emotion-related decision systems operate to choose between gene-specified rewards such as taste, touch, and beauty. Reasoning processes capable of planning ahead with multiple steps held in working memory in the explicit system can allow the gene-specified rewards not to be selected, or to be deferred. The stochastic, noisy, dynamics of decision-making systems in the brain may influence whether decisions are made by the selfish-gene-specified reward emotion system, or by the cognitive reasoning system that explicitly calculates reward values that are in the interests of the individual, the phenotype. © 2013 Rolls.


Rolls E.T.,Oxford Center for Computational Neuroscience
Frontiers in Systems Neuroscience | Year: 2011

Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavor. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavor reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds.The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual/olfactory/taste input as shown by devaluation experiments in which food is fed to satiety, and by correlations of the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety is implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs. the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention. © 2011 Rolls.


Rolls E.T.,Oxford Center for Computational Neuroscience
Progress in Neurobiology | Year: 2015

Complementary neuronal recordings in primates, and functional neuroimaging in humans, show that the primary taste cortex in the anterior insula provides separate and combined representations of the taste, temperature, and texture (including fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in a second tier of processing, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by associative learning with olfactory and visual inputs, and these neurons encode food reward value on a continuous scale in that they only respond to food when hungry, and in that activations correlate linearly with subjective pleasantness. Cognitive factors, including word-level descriptions, and selective attention to affective value, modulate the representation of the reward value of taste and olfactory stimuli in the orbitofrontal cortex and a region to which it projects, the anterior cingulate cortex, a tertiary taste cortical area. The food reward representations formed in this way play an important role in the control of appetite, and food intake. Individual differences in these reward representations may contribute to obesity, and there are age-related differences in these value representations that shape the foods that people in different age groups find palatable. In a third tier of processing in medial prefrontal cortex area 10, decisions between stimuli of different reward value are taken, by attractor decision-making networks. © 2015 Elsevier Ltd.


Rolls E.T.,Oxford Center for Computational Neuroscience
Annual Review of Nutrition | Year: 2016

The taste cortex in the anterior insula provides separate and combined representations of the taste, temperature, and texture of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are combined by associative learning with olfactory and visual inputs for some neurons, and these neurons encode food reward value in that they respond to food only when hunger is present and in that activations correlate linearly with subjective pleasantness. Cognitive factors, including word-level descriptions and selective attention to affective value, modulate the representation of the reward value of taste, olfactory, and flavor stimuli in the orbitofrontal cortex and a region to which it projects, the anterior cingulate cortex. These food reward representations are important in the control of appetite and food intake. Individual differences in reward representations may contribute to obesity, and there are age-related differences in these reward representations. Implications of how reward systems in the brain operate for understanding, preventing, and treating obesity are described. Copyright © 2016 by Annual Reviews. All rights reserved.


Rolls E.T.,Oxford Center for Computational Neuroscience
Journal of Texture Studies | Year: 2011

The brain areas that represent taste also provide a representation of oral texture. Fat texture is represented by neurons independently of viscosity: some neurons respond to fat independently of viscosity, and other neurons encode viscosity. The neurons that respond to fat also respond to silicone and paraffin oil, indicating that the sensing is texture- not chemo-specific. This fat sensing is not related to free fatty acids such as linoleic acid; a few other neurons with responses to free fatty acids typically do not respond to fat in the mouth. Fat texture-sensitive neurons are found in the primary taste cortex, the secondary taste cortex in the orbitofrontal cortex where the pleasantness of food is represented, and in the amygdala. Different neurons respond to different combinations of texture, taste, oral temperature, and in the orbitofrontal cortex to olfactory and visual properties of food. Complementary human functional neuroimaging studies are described. PRACTICAL APPLICATIONS: This research has implications for understanding how fat in the mouth is sensed. It therefore has implications for the design of foods that may mimic the mouthfeel of fat, but not its energy content. © 2011 Wiley Periodicals, Inc.

Loading Oxford Center for Computational Neuroscience collaborators
Loading Oxford Center for Computational Neuroscience collaborators